Вестник Камчатской региональной ассоциации «Учебно-научный центр»
Институт вулканологии и сейсмологии ДВО РАН
Биотехнология извлечения металлов из сульфидных руд
PDF

Ключевые слова

bacterial and chemical leaching
chemolithotrophic microorganisms
sulphide ores

Раздел

Научные статьи

Статистика

Просмотров: 338
Скачиваний: 160

Как цитировать

1. Кузякина Т. И., Хайнасова Т. С., Левенец О. О. Биотехнология извлечения металлов из сульфидных руд // Вестник КРАУНЦ. Серия: Науки о Земле. 2008. № 2 (12). C. 76–86. извлечено от http://www.kscnet.ru/journal/kraesc/article/view/547.

Аннотация

В течение последних лет бактериально-химическое выщелачивание сульфидов металлов получило широкое развитие. Извлечение ценных компонентов из минералов с помощью микроорганизмов служит на сегодняшний день признанным биотехнологическим способом переработки сульфидных руд. Эта технология является экономически выгодной и экологически безопасной. В данной статье освещается механизм бактериально-химического окисления сульфидных руд, приведены характеристики и роль основных микроорганизмов в процессах биовыщелачивания. В настоящее время широкое применение получили хемолитотрофные ацидофильные микроорганизмы Acidithiobacillus ferrooxidans, At. thiooxidans, Leptospirillum ferrooxidans. С развитием метода чанового выщелачивания все больший интерес привлекают умеренно термофильные и термофильные бактерии и археи, которые при высоких температурах обеспечивают более высокую скорость окисления сульфидов.

PDF

Библиографические ссылки

Алискеров А.А., Яроцкий Г.П. Введение в проблему горнопромышленного освоения Камчатки. Петропавловск-Камчатский: Издательство Камчатского Государственного педагогического университета, 2003. 265 с.

Заварзин Г.А. Литотрофные микроорганизмы. М.: Наука, 1972. 254 c.

Каравайко Г.И., Кузнецов С.И., Голомзик А.И. Роль микроорганизмов в выщелачивании металлов из руд. М.: Наука, 1972. 248 с.

Каравайко Г.И., Росси Дж., Агате А. и др. Биогетехнология металлов. Практическое руководство. М.: Центр международных проектов ГКНТ, 1989. 375 с.

Трухин Ю.П., Степанов В.А., Сидоров М.Д. Камчатская никеленосная провинция // Доклады Академии наук. 2008. Том 418. № 6. С. 802–805.

Bogdanova T.I., TsaplinaI.A., Kondrat’eva T.F. et al. Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium // International journal systematicic and evolutionary microbiology. 2006. № 56. P. 1039–1042.

Bosecker K. Bioleaching: metal solubilization by microorganisms // FEMS Microbiol. Rev. 1997. V. 20. P. 591–604.

Coram N.J., Rawlings D.E. Molecular relationship between two groups of the genus groups of the genus Leptospirillum and the findings that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 400C // Appl. and Environ. Microbiol. 2002. V. 68. № 2. P. 838–845.

Dufresne S., Bousquet J., Boissinot M., Guay R. Sulfobacillus disulfidfooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium // International journal of systematic bacteriology. 1996. V. 46. № 4. P.1056-1064.

Ferrer M., Golyshina O.V., Beloqui A. et al. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated // Nature. 2007. V. 445. P. 91–94.

Gericke M., Pinches A., van Rooyen J.V. Bioleaching of a chalcopyrite concentrate using an extremely thermophilic culture // International Journal of Mineral Processing. 2001. V. 62. № 1. P. 243–255.

Golyshina O.V., Pivovarova T.A., Karavaiko G.I. et al. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplacmaceae fam.nov., comprising a distinct lineage of the Archaeа // International Journal of Systematic and Evolutionary Microbiology. 2000. V. 50. P. 997–1006.

Golyshina O., Timmis K.N. Ferroplasma and relatives, recently discoveret cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments // Environ. Microbiol. 2005. V. 7. № 9. P. 1277–1288.

Han C.J. Physiological studies of extremely thermoacidophilic microorganisms under normal and stressed conditions // Dissertation for the Degree of Doctor of Phylosophy. North Carolina State University. 1998. 220 p.

Hawkes R.B., Franzman P.D., O’hara G., Plumb J.J. Ferroplasma cupricumulans sp. nov., novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap // Extremophiles. 2006. V. 10. P. 525–530.

Heijnen J.J., Boon M. Chemical oxidation kinetics of pyrite in bioleaching processes // Hydrometallurgy. 1998. V. 48. № 1. P. 27–41.

Hippe H. Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992) // International Journal of Systematic and Evolutionary Microbiology. 2000. V. 50. P. 501–503.

Karavaiko G.I., Bogdanova T.I., Tourova T.P. et al. Reclassification of ‘Sulfobacillus thermosulfidooxidans subsp. Thermotolerans’ strain K1 as Alyciclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alyciclobacillus disulfidooxidans comb. nov., and emended description of the genus Alyciclobacillus // International jornal of sistematic and evaluthionary microbiology. 2005. № 55. P. 941–947.

Liu H.-L., Chen Y.-W., Lan Y.-W., Cheng Y.-C. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans // Appl. Microbiol. Biotechnol. 2003. V. 62. P. 414–420.

Melamud V.S., Pivovarova T.A., Tourova T.R. et al. Sulfobacillus sibiricus sp. nov., a new moderately thermophilic bacterium // Microbiology (Moscow). 2003. V. 72. № 5. P. 605–612.

Norris P.R., Burton N.P., Foulis N.A.M. Acidophiles in bioreactor mineral processing // Extremophiles. 2000. V. 4. P. 71–76.

Norris P.R., Clark D.A., Owen J.P., Waterhous S. Characteristics of Sulfobacillus acidophilus sp. nov. And other moderately thermophilic mineral-sulfide-oxidizing bacteria // Microbiology. 1996. V. 142. № 4. P. 775–783.

Pennisi E. Extreme home for simple organisms // Science Now. 2000. P. 1–2.

Pivovarova T.A., Kondrat,eva T.F., Batrakov S.G. et al. Phenotypic Features of Ferroplasma acidiphilum Strains YT and Y-2 // Micribiology. 2004. V. 71. № 6. P. 698–706.

Rawlings D.E. Heavy metal mining using microbes // Annu. Rev. Microbiol. 2002. № 56. Р. 65–91.

Rawlings D.E. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates // Microbial Cell Factories. 2005. V. 4. № 13. DOI: 10.1186/1475-2859-4-13.

Robbins E.I. Bacteria and Archaea in acidic environments and a key to morphological indentification // Hydrobiologia. 2000. V. 433. P. 61–89.

Rodriguez Y., Ballester A., Blazquez M.L. et al. New information on the pyrite bioleaching mechanism at low and high temperature // Hydrometallurgy. 2003. V. 71. P. 37–46.

Sand W., Gehrke T., Jozsa P.-G., Schippers A. (Bio)chemistry of bacterial leaching – direct vs. indirect bioleaching // Hydrometallurgy. 2001. V. 59. P. 159–175.

Schippers А. Сhapter 1. Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. // Microbial Processing of Metal Sulfides. Springer Netherlands. 2007. P. 3–33.

Schippers A., Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur // Applied and Environmental Microbiology. 1999. V. 65. № 1. P. 319–321.

Semenza M., Viera M., Curutchet G., Donati E. The role of Acidithiobacillus caldus in the bioleaching of metal sulfides // Latin American Applied Research. 2002. V. 32. P. 303–306.

Tributsch H. Direct vs indirect bioleaching // Hydrometallurgy. 2001. V. 59. P. 177– 185.

Zakharchuk L.M., Egorova M.A., Tsaplina I.A. et al. Activity of the enzymes of carbon metabolism in Sulfobacillus sibiricus under various conditions of cultivation. Microbiology. 2003. V. 72. № 5. P. 553–557.

Zhuravleva A.E., Tsaplina I.A., Ismailiv A.D. et al. Metabolism peculiarities of bacteria of the genus Sulfobacillus // Advanced materials research. 2007. V. 20–21. P. 469–472.

Creative Commons License
Контент доступен под лицензией Creative Commons Attribution-NonCommercial 4.0 International License.