АЭРОГРАВИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ ИФЗ РАН НАЛ АКВАТОРИЕЙ ВОСТОЧНОГО ПОБЕРЕЖЬЯ КАМЧАТКИ ОСЕНЬЮ 2013 г.

Аэрогравиразведка является одним из эффективных современных методов исследования поля силы тяжести Земли (Железняк и др., 2007). Это обусловлено высокой производительностью проведения измерений и возможностью их выполнения с использованием одного и того же комплекса оборудования на суше, на море, а также в зонах шельфа, которые являются непригодными для выполнения морской гравиразведки.

С 2005 г. Институт физики Земли (ИФЗ) РАН активно участвует в исследовании гравитационного поля в арктических широтах. За это время были отработаны методические приемы планирования и выполнения съемки, создан самолет-лаборатория и выполнено около 200000 погонных километров по профилям над акваториями Баренцева и Карского морей, составлена карта гравиметрических аномалий архипелага островов Новая Земля.

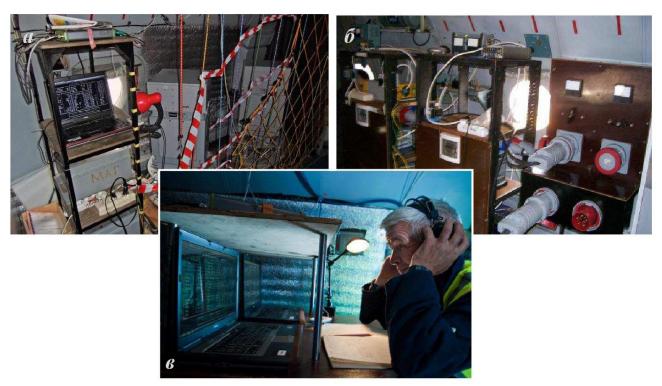
Для уточнения фигуры Земли и исследования особенностей гравитационного поля Земли, связанного с глубинным строением области перехода «океан-континент» в сентябре-октябре 2013 г. сотрудниками ИФЗ РАН были выполнены аэрогравиметрические исследования над акваторией Тихого океана и прибрежных геотектонических структур полуострова Камчатка в районе п-ва Кроноцкий, Кроноцкого и Камчатского заливов.

Целью исследований являлось создание карты гравитационных аномалий в свободном воздухе масштаба 1:200000.

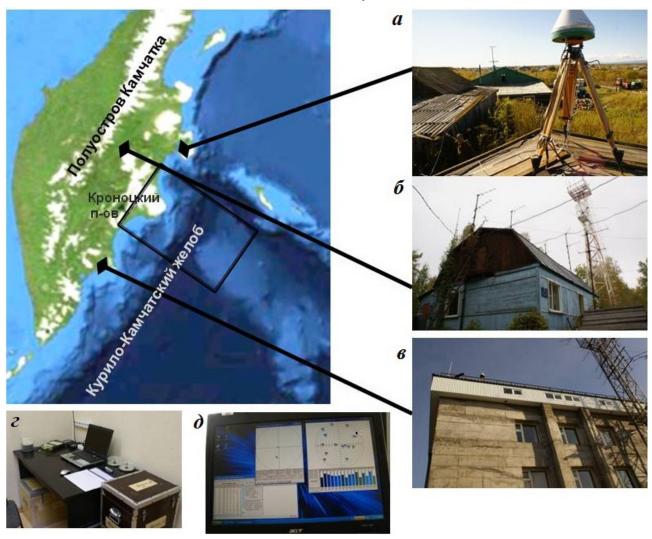
Работы выполнялись с борта самолета-лаборатории, созданного на базе АН-26 БРЛ, оснащенного современным российским и зарубежным оборудованием (Дробышев и др., 2008, 2009, 2011), способного выполнять беспосадочные съемки на протяжении 8 летных часов (рис. 1). Аппаратурный комплекс включал в себя гравиметры типа

Рис. 1. Самолет-лаборатория ИФЗ РАН на базе АН 26 БРЛ на стоянке в аэропорту «Петропавловск-Камчат-ский», г. Елизово (фото А.В. Макушина).

GT-1A, навигационное GPS-оборудование, а также систему резервного электропитания гравиметрических комплексов (рис. 2).


Важным вопросом при проведении работ является обеспечение дифференциального режима GPS/ГЛОНАСС-навигации. Помехи позиционирования с помощью спутниковых навигационных систем регистрировались сетью наземных корректирующих станций (НКС) и учитывались на этапе пост-обработки. Оборудование НКС включало в себя GPS-приемоиндикаторы JAVAD с антенной типа MarAnt, а также комплект для обеспечения бесперебойного питания на случай непредвиденных отключений электричества. Частота опроса спутниковой информации составляла 10 Гп.

Оценка возможного удаления НКС от места съемки, выполненная нами ранее (Дробышев и др., 2009), показала, что в арктических широтах приемлемым является расстояние в 350-450 км. Данные, полученные над акваторией Охотского моря (Могилевский и др., 2011) позволили заключить, что при удачном проведении съемки расстояние до базовой станции может превышать 650 км. Исходя из этого, было выполнено размещение оборудования наземного сопровождения.


По согласованию с руководством Камчатского филиала (КФ) ГС РАН базовые станции были размещены на сейсмических станциях «Крутоберегово», «Козыревск», а также в помещении КФ ГС РАН в г. Петропавловск-Камчатский (рис. 3). Благодаря содействию со стороны руководства КФ ГС РАН была обеспечена оперативная доставка оборудования и развертывание сети НКС. По согласованию с руководством Института вулканологии и сейсмологии (ИВиС) ДВО РАН GPS-антенна была размещена на крыше здания института.

Летные работы выполнялись из аэропорта Петропавловск-Камчатский, г. Елизово. В течение 24 летных дней было выполнено ~ 40000 погонных км съемки по сети профилей вкрест простирания Курило-Камчатского глубоководного желоба с ортогональными им контрольными профилями. Район работ захватывал одно из самых интересных и уникальных мест на Камчатке – Кроноцкий государственный биосферный заповедник. Именно здесь расположены Долина Гейзеров, долина Смерти, кальдера Узон (рис. 4), вулканы Крашенинникова (рис. 5), Кроноцкий (рис. 6) и Тауншиц (рис. 7). Над морем участок съемки покрывал акватории Кроноцкого и Камчатского заливов, а также Курило-Камчатский глубоководный желоб.

Расположение вулканов в непосредственной близости от западной границы района работ налагало серьезные ограничения на минимально допустимую высоту пилотирования. Съемки проводились на единой заданной высоте 4000 м, которая определялась требованиями безопасности полетов.

Рис. 2. Размещение оборудования на борту самолета-лаборатории: a – гравиметры с аккумуляторной стой-кой; δ – система электропитания, ϵ – рабочее место оператора.

Рис. 3. Схема расположения района работ и размещения базовых станций: a – GPS-антенна на сейсмостанции «Крутоберегово»; δ – сейсмостанция «Козыревск»; δ – расположение GPS-антенны на крыше здания ИВиС ДВО РАН в г. Петропавловск-Камчатский, ϵ – комплект оборудования и рабочее место оператора базовой станции, δ – экран персонального компьютера базовой станции с диаграммой расположения спутников.

Резкие изменения ветров часто вызывали потребность ручного пилотирования самолета для соблюдения постоянной высоты полета. Изменение скорости ветра и его направления обуславливали постоянное слежение за режимами работы двигателей для соблюдения постоянной скорости самолета на профиле относительно поверхности.

В результате выполненных экспедиционных работ по данным 423150 пунктов полученного каталога была построена карта гравитационных аномалий изучаемой площади масштаба 1:200000 в свободном воздухе (рис. 8). Погрешность карты составляет 0.77 мГал, что соответствует точности первого класса. Следует отметить, что в ходе проведенных аэрогравиметрических исследований впервые в России была получена кондиционная карта в такой резкоаномальной зоне, где горизонтальный градиент достигал 10-15 мГал/км.

Коллектив ИФЗ РАН считает приятным долгом выразить свою благодарность директору КФ ГС РАН к.т.н. В.Н. Чеброву и директору ИВиС ДВО РАН академику Е.И Гордееву, а также заместителям директора ИВиС ДВО РАН А.А. Овсянникову и д.-г.м.н. Н.И. Селиверстову за содействие в организации работ, а также всестороннее обсуждение исследований.

Хочется поблагодарить сотрудников сейсмостанций «Козыревск», «Ключи», «Крутоберегово», Отдела радиотелеметрических сейсмических станций и других сотрудников КФ ГС РАН за помощь и участие в проведении работ.

Отдельно мы признательны с.н.с. ИВиС ДВО РАН, к.т.н. В.А. Рашидову за энтузиазм и радушное отношение к нашей экспедиции.

АЭРОГРАВИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ

Рис. 4. Кальдера Узон на подлете к району работ (фото А.В. Макушина).

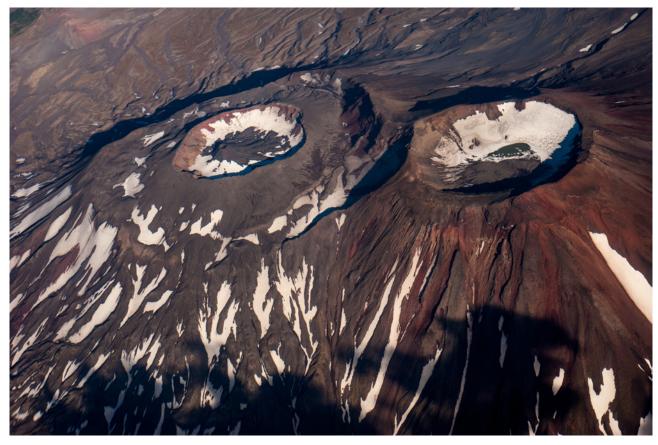


Рис. 5. Вулкан Крашенинникова (фото А.В. Макушина).

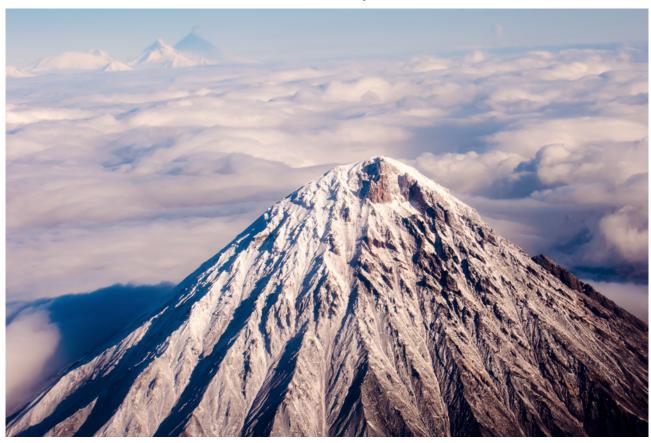


Рис. 6. Вулкан Кроноцкий (фото А.В. Макушина).

Рис. 7. Вулкан Тауншиц с разрушенными кратерами древней вулканической деятельности (Фото А.В. Макушина).

АЭРОГРАВИМЕТРИЧЕСКИЕ ИССЛЕДОВАНИЯ

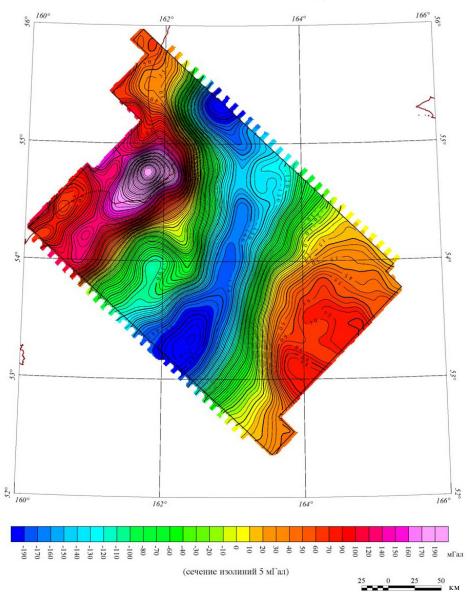


Рис. 8. Карта гравитационных аномалий в свободном воздухе.

Список литературы

Железняк Л.К., Конешов В.Н. Изучение гравитационного поля мирового океана // Вестник российской академии наук. 2007. Т. 77. № 5. С. 408-419.

Дробышев Н.В., Конешов В.Н., Клевцов В.В. и др. Создание самолета-лаборатории и методики работ для выполнения аэрогравиметрической съемки в арктических условиях // Сейсмические приборы. 2008. Т. 44. № 3. С. 5-19. Дробышев Н.В., Конешов В.Н., Конешов И.В., Соловьев В.Н. Создание самолета-лаборатории и методика выполнения аэрогравиметрической съемки в арктических условиях // Вестник Пермского университета. Серия «Геология». 2011. № 3. С. 37-50.

Дробышев Н.В., Конешов В.Н., Погорелов В.В. и др. Особенности проведения высокоточной аэрогравиметрической съемки в приполярных районах // Физика Земли. 2009. № 8. С. 36-41. Могилевский В.Е., Павлов С.А. Высокоточная аэрогравиметрическая съемка на шельфе // Разведка и охрана недр 2011. № 7. С. 7-10.

В.Н. Конешов, зам. директора ИФЗ РАН, профессор, д.т.н.; Д.В. Абрамов, н.с. ИФЗ РАН; Н.В. Дробышев, в.н.с. ИФЗ РАН, к.т.н.; В.В. Клевцов, с.н.с. ИФЗ РАН, к.ф.-м.н.; Н.В. Кузнецова, вед. инженер ИФЗ РАН; Е.Ю. Лаврентьева, н.с. ИФЗ РАН; А.В. Макушин, вед. инженер ИФЗ РАН; В.В. Погорелов, уч. секретарь ИФЗ РАН, к.ф.-м.н.; В.Н. Соловьев, с.н.с. ИФЗ РАН