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In order to reveal the genesis of barites, the authors identified content and distribution regularities of rare-
earth elements in barites from the Deryugin Depression, the Sea of Okhotsk. The obtained data show that 
a hydrothermal component does not affect the formation of the barites. Sea water is the source of the rare-
earth elements, and their composition apparently corresponds to the composition of cold seeps. 
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INTRODUCTION

Authigenic marine barite formations (BaSO4) 
occur in various geological settings, and their 
formation is associated with different physical and 
chemical, as well as biological processes (Bogdanov, 
2006; Gonzalez-Munoz et al., 2012; Hein et al., 2007; 
Monnin et al., 2003; Vanneste et al., 2013). In the 
marine environment, there are several different ways 
to form barite, which are reduced to the interaction 
between water masses enriched with barium (fluid) 
and sulfate ion (sedimentation conditions). The 
barium sulfate precipitate is resulted from the solution 
supersaturation. (Hein et al., 2007; Paytan et al., 
2002). Fluids (sea water, pore waters or hydrothermal 
solution) and medium (water column, bottom surface, 
sediments, cold seeps or hydrothermal ore genesis 
conditions) affect geochemical characteristics of 
barite (Griffith, Paytan, 2012). There are four general 
regimes of barite formation: (1) hydrogenic or pelagic 
― in which barite is formed in the water column during 
decomposition of the barium enriched organic matter; 
(2) hydrothermal ― in which barite precipitates due 
to mixing of the Ba-enriched hydrothermal fluids and 
sea water near the bottom; (3) diagenetic ― in which 
barite is formed in thick sedimentary layer in the 
result of post-sedimentation diagenetic processes; (4) 
in which barite is resulted from evolution of fluids or 
Ba−enriched cold seeps in sedimentary basin, which 

are delivered to the bottom surface by tectonic and 
hydrological processes not associated with volcanic or 
hydrothermal activity (Binns et al., 1997; Brumsack, 
1986; Griffith, Paytan, 2012; Hein et al., 2007; Naehr 
et al., 2000; Torres et al., 1996). 

Variations of chemical microelement and isotope 
compositions of carbon, oxygen and sulfur in 
sea barites are used to make paleoceanography 
reconstructions for determining primary productivity 
in the past; the role and potential value of bacteria 
in barite deposition, as quantitative parameters 
that control the barite preservation in sediments; to 
define effect of diagenesis on the barite geochemistry 
(Griffith, Paytan, 2012; Martin et al., 1995). However, 
all the conclusions are possible only after accurate 
definition of these formations genesis. At present, in 
terms of the genesis, the barite mineralization of the 
Deryugin Basin (the Sea of Okhotsk) is the topic to 
discuss. 

Barites from the Deryugin Basin for the first 
time were dredged in 1981 by B.I. Vasilyev and 
identified by M.I. Lipkina in 1987 (Astakhova et al., 
1987). Later, significant amount of expeditions and 
laboratory studies were performed (Derkachev et al., 
2000; Greinert et al., 2002). The obtained data allow 
estimation of the area of the barite-bearing surface 
of the bottom in the Deryugin Basin as a potentially 
large barite deposit, with predicted resources of 5 
million tons (Aloisi et al., 2004). The question of the 
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Okhotsk Sea barite structures origin and its forming 
matter sources is still open. Some researchers believe 
that the barites formation is associated with low-
temperature hydrothermal activity (Astakhov et al., 
2017; Akhmanov et al., 2015), others associate their 
formation with cold gas-fluid emanation (cold seeps) 
(Derkachev et al., 2002; Aloisi et al., 2004; Greinert 
et al., 2002). In authigenic mineral formation, the 
composition of new formations must inherit features 
of concentration and distribution of various elements 
corresponding to one of these processes. 

At present, during the data on rocks genesis 
interpretation, we use the data on rare-earth elements 
composition (REE, lanthanides). Due to its chemical 
properties this group of metals is the unique one and 
under various physicochemical parameters of the 
marine environment it forms special composition 
ref lecting formational conditions. This ability 
is resulted from the REE chemical properties in 
natural processes, and allows inhering lanthanide 
compositions of the initial material. 

This paper reveals the REE distribution in the 
Deryugin Basin barites in order to define the source 
of the matter (hydrothermal or cold seep) composing 
these formations.

MATERIALS AND METHODS 
OF INVESTIGATION

The results were obtained using the data on 
the barite samples dredged by a bottom grab in the 
Deryugin Basin (the Sea of Okhotsk) (fig. 1) in 54th  

voyage of the R/V «Akademik MA Lavrentiev» in 
2011 at the stations Lv54−7−4 (53.988° N, 146.310° E,  
depth ― 1460 m), Lv54−35 (54.004° N, 146.292° E, 
depth ― 1492 m). During interpreting the data on the 
REE composition in barites we used these chemical 
elements' content in bottom seawater, sampled at 
the 1444 m depth at Lv54−7−1 station (53.985° N,  
146.309° E) in the same voyage. Mineral composition 
of barites was studied in the Center for Collective Use 
(CCU) «Primorsky Center of Local Elementary and 
Isotope Analysis» by FEGI FEB RAS using the powder 
microdiffractometry method (analysts N.V. Gruda) 
on a MiniFlex II diffractometer by RIGAKU (Japan) 
and scanning electron microscopy ( SEM) (analysts  
A.V. Poselyuzhnaya and A.E. Krasnenko) on an electron 
microscope Tescan Lyra3 (the Czech Republic). 

The R EE concentrations in bar ites were 
defined using the inductively coupled plasma mass 
spectrometry (ICP−MS) method in the above-
mentioned CCU. This method is known as the most 
accurate method for determining of the low REE 
concentrations in various geological samples. The 
analysis was carried out using liquid samples in 
order to obtain their maximum representativity and 
homogeneity. It turned out that barites consisting of 
more than 95% of barium sulphate (BaSO4) refer to 

sparingly soluble minerals. The main ways of their 
decomposition include fusion and agglomeration with 
various agents. 

Methods for the REE in barites determination 
are presented in several papers dealing with elemental 
and isotopic analysis (Guichard et al., 1979, Martin 
et al., 1995). For example, the neutron-activation 
method may not correspond to the required accuracy, 
which is so important in interpretation of the REE 
composition data, and also does not allow to determine 
the entire spectrum of elements. In determination of 
the REE in barites using the ISP−MS method, the 
analytical isotopes Sm, Eu and Gd are subjected to 
the barium strong influence, due to multiple excess 
of Ba concentration over the REE content, which 
can lead to data corruption and the results erroneous 
interpretation. For example, the paper of (Baioumy, 
2015) on barites of the Oasis of Bahariya (Egypt), 
contains the data on anomalously high concentrations 
of these three REE, which, in our opinion, highly 
likely does not correspond to reality. 

The main problem to be solved for the accurate 
REE and especially Eu determination, using the 
ISP−MS method, is to overcome the effect of Ba 
high concentrations in analyzed solutions. This was 
achieved by sample decomposing in Teflon crucibles 
and subsequent precipitation of Ba in the form of its 
sulphate by adding a stoichiometric amount of H2SO4 
to remove the Ba excess from the solution (analyst 
Shcheka Zh.A.) The REE definition was carried out 

Fig. 1. Map of sampling area for barites and seawater.
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on the Agilent 7700x mass spectrometer (Japan) using 
the device hardware (a collision cell for eliminating 
interference, filled with helium) and, if necessary, 
by the obtained results mathematical correction 
(Elovsky, 2015). The main advantage of this technique 
is a multiple decrease in the Ba/Eu ratio, as well 
as a low dilution factor of 150 (in routine methods, 
this factor is usually 5000 or even more), which did 
not significantly reduce the concentration of the 
detectable elements in the solution. At the same time, 
the process of precipitation of barium could cause an 
underestimation of the obtained results related to the 
sorption of REE from the solution on newly formed 
barite crystals.

We verified the possible REE sorption under these 
conditions using the «introduced-found» technique. 
The paper shows that sorption does not occur and the 
technique can be applied to quantitative estimation of 
REE (Blokhin et al., 2016, 2017).

The REE in a sea water sample were also 
determined using the ICP−MS method on an Agilent 
7700x mass spectrometer with pre-concentration 
of rare-earth elements on an Lewatit® TP 207 ion 
exchange resin (Elovskiy and Mikhaylik, 2016).

RESULTS AND DISCUSSION

Based on the data on powder microdiffraction 
and SEM (fig. 2, tab. 1), the body is composed of 
nearly pure barite. The rhomboid morphology of 
barite crystals (fig. 3) is typical for diagenetic bodies in 
various regions of the World ocean (Griffith, Paytan, 
2012). The obtained data show that the REE content 
for barites varies from n 10-1 mg/kg for light to n 10-3 

mg/kg for medium and heavy REE in barites from 
the Deryugin basin, while in the seawater sample the 
content varies from ng/l for light REE to n 10-2 ng/l 
for medium and heavy REE (Table 2). The distribution 
of slate (PAAS) of normalized REE barites and the 
benthal (depth of 1444 m) seawater in the Deryugin 
basin (fig. 4) shows the change in the ratio of light 
REE to heavy LaSn/LuSn (сН ― normalized by slate) 
within 0.54−0.96, which is close to benthal water in the 
Deryugin basin (0.63).

In hydrothermal barites, the index value is greater 
than 1 and the increase in heavy lanthanides in 
relation to the light lanthanides has not been revealed 
(Dubinin, 2006). Such an REE composition in the 
barites, which we studied, reflects the distribution of 
dissolved REE forms in the benthal seawater in the 
Deryugin basin.

The value of the cerium anomaly (Ce*), calculated 
as Ce/Cepaas/((0.5*La/Lapaas) + (0.5*Pr/Prpaas)) is 
less than 1, also inherited from seawater (fig. 4). 
The depletion of cerium, which we studied in the 
Okhotsk baritic bodies, most likely gives evidence for 
a rapid growth rate of these bodies and is inherited 
from solutions (seeps?), which form these ore bodies. 
A positive (> 1) cerium anomaly in the ocean is 
characterized by hydrogenogenic ferromanganese 
bodies in which cerium accumulates due to oxidative 
sorption just in the water column on suspended Fe−Mn 
oxyhydroxides (Dubinin, 2006).

The magnitude of the europium anomaly (Eu*) 
varies from 0.20 to 0.59 (Eu* = Eu/Eupaas/((0.5*Sm/ 
/Smpaas) + (0.5*Gd/Gdpaas))). This shows that the 
hydrothermal substance is not involved into the formation 
of barites, because the vast majority of marine bodies 

Fig 2. Qualitative chemical composition of barite mineralization in the Deryugin Basin on  SEM data.

Table 1. Quantitative chemical composition of the Deryugin Basin's barite mineralization on SEM data.

Element Wt.% Sigma Wt.% At. % Oxide Wt.% oxide
O 29.15 67.27
S 15.00 0.11 17.27 SO3 37.45
Sr 2.84 0.14 1.20 SrO 3.36
Ba 53.01 0.20 14.25 BaO 59.19

Total amount: 100.00 100.00 100.00
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Fig. 3. Barite mineralization of the Deryugin Basin on the increased SEM

Table 2. The REE content in barites (mg/kg) and concentration in sea water (ng/l) from the Deryugin Basin.

Element Lv54−7−4/4 Lv−54−35 Lv54−4/2 Lv54−7−1 
La 0.574 0.626 0.163 5.220
Ce 0.809 0.417 0.090 3.376
Pr 0.097 0.069 0.011 0.770
Nd 0.359 0.279 0.035 3.173
Sm 0.072 0.067 0.010 0.628
Eu 0.003 0.008 0.001 0.160
Gd 0.091 0.093 0.012 0.819
Tb 0.020 0.019 0.003 0.110
Dy 0.093 0.084 0.013 0.804
Ho 0.020 0.017 0.003 0.202
Er 0.063 0.053 0.008 0.661
Tm 0.011 0.010 0.002 0.091
Yb 0.063 0.056 0.010 0.568
Lu 0.012 0.011 0.002 0.093

Fig.4. The slate distribution (PAAS on (McLennan, 1989)) of normalized REE in barites and bottom sea water of the 
Deryugin Basin (depth 1444 m, station Lv54−7−1).
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formed due to hydrothermal activity are characterized 
by the magnitude of Eu* > 1 (Dubinin, 2006).

We suppose that the formation of the negative 
europium anomaly can be caused by two factors. The first 
one is that the continental lithogenesis is characterized by 
an intensive supply of terrigenous substance from feeding 
provinces (Bezrukov, Lisitsin, 1957). 

The study of the mineralogical and geochemical 
features of the sediment from the well MD01−2415 
(Levitan et al., 2007), drilled in the central part of 
the Sea of Okhotsk, has shown that the formation 
of the negative europium anomaly here is related to 
the granitic material in the Okhotsk volcanic belt, as 
well as the existence of remains of diatom organisms 
(Levitan et al., 2007). Moreover, smectite, which is one 
of the main clay minerals in the sediments of the Sea 
of Okhotsk (Astakhov et al., 2008, Volokhin, 2012), is 
also characterized by the negative europium anomaly 
(Dubinin, 2006; Fagel et al., 1997).

Under conditions of high sedimentation rates the 
barites are contaminated with both allotigenic and 
authigenic materials. At low REE concentrations 
in barites, the formation of their bulk composition 
depends on the impurity component.

In our case th is leads to the appearance 
of the negative europium anomaly. However, 
the composition of REE of surface sediments  
(0−30 cm) in the Deryugin basin that accumulates 
simultaneously with the growth of barite formations 
has the positive europium anomaly (Eu * up to 1.4) 
both in the bulk sample (Sattarova et al., 2014) 
and the sample with removed authigenic mineral 
forms and, moreover, in the clay fraction of the 
sediment (Mikhailik et al., 2016). This is due to 
travelled material chief ly delivered by the Amur 
River (Derkachev et al., 2004; Mikhaylik et al., 2016; 
Sattarova et al., 2014).

The second reason that leads to the formation 
of a REE composition depleted in europium, the 
barite from the Deryugin basin, may be explained 
by the depletion of the f luid (cold seep) caused by 
europium. Restoration of europium to oxidation state 
+2 (the most mobile form of this element) is possible 
at elevated temperatures (Sverjensky, 1984). In the 
Deryugin basin, in the region of barite mineralization, 
high concentrations of methane are observed in the 
sediment column3 (from the surface down along the 
column: 0−400 cm ― 40−70 μl/l,500−1800 cm ― 
30 000−50 000 μl/l, at depths of 1100 cm from the 
bottom surface, the sediment are being enriched with 
methane up to 80,000 .mu.l/l, background 10−30 l/l) 
while in the bottom layer of water the concentration 
reaches 1943 nL/l, while background values are equal 
to 40−50 nl/l (Cruise ..., 1999; Cruise ..., 2000; Cruise 
..., 2002). Isotopic composition of sulfur and oxygen 
(δ34S: 21.0−38.6 ‰ CDT; δ18O: 9.0−17.6 ‰) in barites 
clearly indicates biological sulphate reduction process 
and δ13C value in (> -43.5 ‰) carbonates within this 

area gives evidence for biogenic methane source 
(Greinert et al., 2002). These data are consistent 
with the results of a study of the geochemistry of the 
pore waters from the Ge 99−32 column, sampled in 
the immediate vicinity of the distribution of barite 
bodies in the Deryugin basin, which confirms that 
there is no any affect from the hydrothermal source 
of the substance (Cruise ..., 1999). Generation of 
the fluid enriched with barium occurs at a depth of 
2 km at temperatures of 60°C under the conditions 
of clay minerals catagenesis (Bollwerk, 2002). This 
is confirmed by the results from Na−Li and Mg−Li 
geothermometers (Derkachev, Nikolaeva, 2007). 
Under these conditions, the europium is restored, 
and its solid phase of the clay substance is absorbed. 
When there is no high-temperature hydrothermal fluid 
influence, characterized by a highly positive europium 
anomaly (Dubinin, 2006), the REE composition of 
cold seeps depleted in europium is formed, which is 
inherited during barite formation.

CONCLUSIONS

The obtained data on the distribution of REE 
in the barites from the Deryugin basin (low REE 
contents and the negative europium anomaly), as 
well as the features of the chemical and isotope 
compositions, the lack of temperature anomalies in 
the barite mineralization zone, the geochemistry of 
the pore waters of the enclosing sediment and, in 
addition, the morphology of the crystals show that 
cold seeps play the leading role of in the formation 
of the barite deposit. The hydrothermal component 
does not affect the formation of barite structures. 
This agrees with the data of V.V. Satarova et al. (2014), 
who showed that the total composition of the REE 
of the surface sediments in the Deryugin basin is 
formed by terrigenous demolition, and the effect of the 
hydrothermal component is not revealed. It is useful to 
remember about the microorganisms that play a role 
in the formation of marine authigenic minerals. More 
accurate investigation of the genesis of the barites from 
the Deryugin basin requires detailed identification of 
both mineral and geochemical criteria and in-depth 
microbiological study.
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