УДК 553.78:553:26

ТЕМПЕРАТУРНАЯ И МИНЕРАЛОГО-ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕОТЕРМАЛЬНОГО МЕСТОРОЖДЕНИЯ ОКЕАНСКОЕ (О-В ИТУРУП)

© 1993 г. С. Н. Рычагов*, С. Ф. Главатских*, О. П. Гончаренко**, Н. С. Жатнуев ***, А. Д. Коробов**

*Институт вулканологии ДВО РАН 683006, Петропавловск-Камчатский, 6. Пийпа 9 **Саратовский государственный университет 410750, Саратов, пр. Ленина 161 ***Геологический институт БНЦ СО РАН 670042, Улан-Удэ, ул. Сахьяновой 6 Поступила в редакцию 19.04.93 г.

В недрах геотермального месторождения происходит последовательная смена режима высоко- и среднетемпературной пропилитизации пород на низкотемпературную (470 - 180°С) снизу вверх, соответственно с изменением состава и температуры гидротермального флюида. В особом термодинамическом и геохимическом режиме формируются области перехода "жидкость-пар". Температурное поле в недрах месторождения характеризуется неоднородным строением: устойчивыми высокими значениями в пределах горстов, постепенным увеличением значений на глубину в опущенных блоках, высокими градиентами значений температур в экзоконтактовой зоне предполагаемого диоритового тела.

Более трех десятилетий ведутся поисково-разведочные и эксплуатационные работы на гидротермальные ресурсы в Исландии, Италии, Новой Зеландии, США, на Филиппинах, в Японии. В нашей стране, Паужетской, изучены вслед Больше-Банная, Кошелевская, Мунтовская, Паратунская И современные другие Камчатки. гидротермальные системы Курильских островах в 60-е годы разбурено геотермальное единственное месторождение Горячий Пляж (о-в Кунашир), вода с температурой более 80°С используется для теплоснабжения. В начале 80-х годов в связи с энергетическими Востока предпринято проблемами Дальнего изучение геотермальных ресурсов Центрального Итурупа и начато бурение на юго-западном склоне вулкана Баранского в пределах известных ранее (Горшков, 1967; Мархинин, Стратула, 1977) термопроявлений Старозаводское поле и Кипящая Речка. Первые результаты работ (Знаменский, 1991; Знаменский, Никитина, 1985; Пчелкин, 1988; Злобин, 1989; Злобин, Знаменский, 1991) свидетельствуют о перспективности геотермального месторождения Океанское для задач тепло- и энергоснабжения о-ва Итуруп. Восстановление детальной структуры восходящего и нисходящего потоков гидротерм и подготовка месторождения к эксплуатации предусматривают всестороннее изучение объекта, в том числе исследование механизмов взаимодействия вода-порода. Изучение гидротермально-измененных пород петрографическими, минералогическими,

геохимическими и другими методами позволило решить следующие задачи на примере нескольких геотермальных месторождений страны и мира ("Структура...", 1992; Elders *et al.*, 1981; Reyes, 1990): моделирование системы зон перетока холодных и горячих вод, определение местоположения и условий образования зон перехода "жидкость-пар" и кипения терм, оконтуривание гидротермального резервуара и изучение природы его границ.

Взаимодействие гидротермальных флюидов и метеорных вод с вмещающими породами вызывает изменение физических, минералогических, химических свойств пород и изотопных соотношений, что соответственно отражает эволюцию температуры, химического состава и других параметров гидротермального флюида, продолжительность и интенсивность его воздействия на породы. Настоящая работа посвящена изучению гидротермалитов как источника детальной информации об изменении температурного и мине-ралого-геохимического режимов (полей) в недрах геотермального месторождения Океанское (центральная часть о-ва Итуруп, Южные Курилы).

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ ГИДРОТЕРМАЛЬНОЙ СИСТЕМЫ И ГЕОТЕРМАЛЬНОГО МЕСТОРОЖДЕНИЯ

Модель геологической структуры гидротермальной системы Баранского и ее региональная

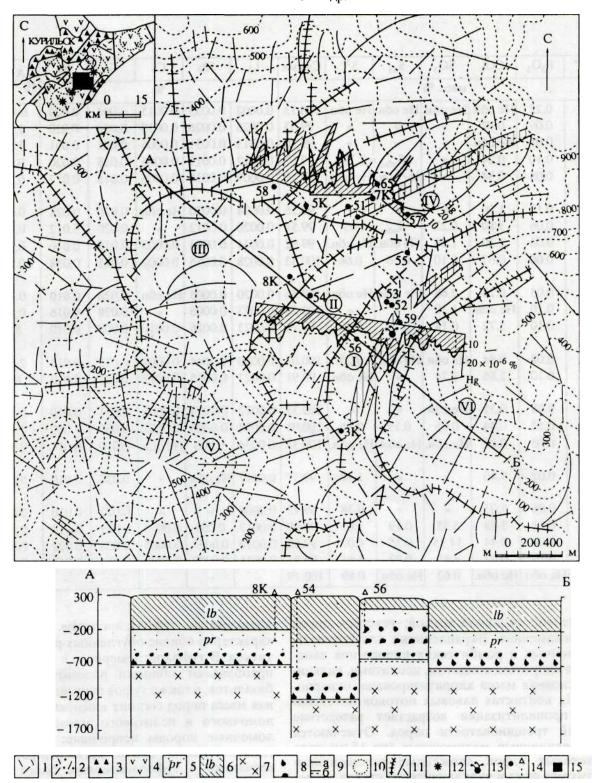
Таблица 1. Макро- и микрокомпонентный состав основных пород разреза центрапьной части гидротермальной системы Баранского

N₂	Глубина		SiO ₂	TiO ₂	$A1_2O_3$	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	H ₂ O -
п.п.	отбора,	Название породы	Macc %										
	M												
1	34.5	Туфы псефитовые кислые	75.70		4.53	11.58		0.04	Не обн.			0.04	1.51
2	57.0	Лавы андезитовые	59.86		19.47	3.70		0.12	0.70	1.68	2.82		2.10
3	100.5	Игнимбриты дацитовые	65.90		14.56		0.89	0.12	0.75	3.40		1.75	1.78
4	141.0	Туфы пемзовые	56.68	0.74	17.08	5.52	3.02	0.23	2.02	4.00	2.86	0.93	2.46
5	157.3	Туфогалечники	63.96	0.79	15.83	4.26	0.98	0.05	0.08	2.85	2.70	1.34	3.38
		пестроцветные											
6	271.5	Силл андезита	61.50	0.78	14.89	3.47	3.34	0.22	0.48	6.22	3.80	1.48	0.63
7	340.0	Туфопесчаник	48.98	0.76	15.89	2.71	5.67	0.18	3.54	5.90	2.10	0.76	2.92
8	455.0	Туфоконгломераты	52.92	0.69	15.14	2.53	5.50	0.17	4.02	6.10	1.70	0.30	3.39
9	572.0	Туфоконгломераты из	62.98	0.62	13.57	3.64	3.97	0.30	3.36	2.16	1.48	3.68	0.05
		зоны вскипания											
10	623.0	Дайка андезито-базальтов	48.60	0.75	17.45	4.69	4.98	0.15	3.62	7.22	1.90	0.25	0.82
11	631.5	Лава андезитов	54.98	0.62	16.17	2.22	6.03	0.16	3.49	7.92	2.07	0.27	0.20
12	663.5	Гуфы андезито-дацитов	63.20	0.72	6.88	1.02	1.41	0.07	3.05	14.02	0.27	1.34	0.10
		пестроцветные											
13	706.0	Игнимбриты	64.04	0.61	13.91	2.18	3.80	0.16	1.68	4.08	2.60	2.57	0.32
14	790.0	Туфы андезито-базальтов	49.15		16.59		5.39	0.15	3.46	8.08		1.10	0.66
		пестроцветные											
15	841.0	Дайка андезитов	55.06	0.70	17.06	3.26	6.53	0.23	4.68	7.52	2.45	0.36	0.29
16	938.0	Туфы псефитовые	48.86	0.80	19.17	2.13	8.10	0.28	3.55	7.76	0.24	0.12	0.20
17	985.0	То же из зоны окварце-	44.02	1.01	23.44	3.50	9.58	0.40	5.38	2.06	0.38	2.30	0.60
		вания и рудообразования											
18	1007.0	То же аргиллизированные	40.24	0.71	15.26	3.86	5.09	0.23	5.20	14.58	1.85	0.25	0.26
		до глины											
19	1058.5	Дайка базальтов	46.88	0.80	19.90	3.32	7.05	0.23	3.96	10.06	1.18	0.25	0.37
20	1079.0	Туфы интрузивные	41.90	0.69	15.35	3.68	5.40	0.34	3.90	11.72	1.74	0.27	0.42
21	1129.5	"	45.58	0.46	11.16	5.77		0.03	Не обн.	11.80		2.22	1.26
22	1164.0	»	52.82		14.38	5.29		0.11	1.77	9.66	0.90		0.26
23	111.0	Туфы глинизированные	64.80		14.72	3.73		0.02	0.64	2.80		2.55	3.72
		J 1											

Примечание. Полный силикатный анализ выполнен в Институте вулканологии ДВО РАН В.В. Дунин-Барковской, Л.А. Карташевой, Г.Ф. Князевой, Г.В. Лец, Г.П. Новоселецкой; определения Li, Rb, Cs - в Институте геохимии СО РАН М.Н. Уфимцевой; Sr, Ba - там же; "-" - не определялось.

позиция обсуждены в работе (Рычагов, 1993). Здесь приведем основные геологические данные, необходимые для интерпретации гидротермаль-но-метасоматических процессов, происходящих в недрах системы и месторождения.

Гидротермальная система приурочена к одноименному верхнечетвертичному вулкану, расположенному андезитово-му средне-, позднеплейстоценовой центре Кипящая кальдеры Кипящей. Кальдера наложена на вулкано-сводо-вое поднятие хребта Грозного, вытянутого северо-восточном В (курило-камчатском) направлении вулкано-тектоничес-ких включающего ряд структур и современных вулканов: Ребун-шири, Иван Грозный, Дракон, Мачеха, Тебень-кова, Баранского ("Геолого-геофизический...", 1987; Горшков, 1967).


Основание разреза сложено в основном псе-фопсаммитовыми и агломератовыми туфами ан-дезитового состава, лавами андезито-базальтов и андезитов (парусная свита, Обломки N_2 pr). туфов представлены андезито-базальтами и андезитами различной степени раскристаллизации, вулканическим стеклом, пемзами, кислыми туфами, кристаллокластами плагиоклазов и реже темно-Последние обычно полностью цветных. хлорити-зированы и эпидотизированы. Обломки Цемент сложен слабо окатаны. мелкими осколками тех же пород и пепловыми частицами; в кислых разностях туфов преобладают стекло, кристалло-класты плагиоклазов кварца. Породы плотные, цемент массивный за счет среднетемпературной пропилитизации. Лавы двупироксено-выми являются плотными порфировыми андезитами и андезито-базальтами с гиалопилитовой и апогиа-

H_2O^+	P ₂ O ₅	co ₂	SO_3	S_{2J}	S^{2-}	Сумма	Li	Rb	Cs	Sr	Ba	Au,	Ag, 10 ⁻⁶
масс. %							%					10 ⁻³ г/т	
4.01	0.22	Не обн.	Не обн.	Не обн.	Не обн		0.0002	0.0035	0.0015	0.005	0.020	0.40	60
5.37	0.09	0.07	>>	»	»	99.53	0.0026	0.0026	0.0010	0.018	0.020	1.2	4
1.86	0.08	Не обн.	»	»	»	99.50		0.0031	0.0006	0.021	0.031	3.3	4
2.61	0.10	0.24	»	S _{общ}	=2.17	99.57	0.0012	0.0015	0.0006	0.028	0.020	0.6	3
2.86	0.08	0.34	>>	Не обн.	Не обн	. 99.50	0.0009	0.0015	0.0005	0.018	0.017	0.5	2
1.44	0.11	1.20	»	»	»	99.56	0.0004	0.0020	Не обн.	0.026	0.028	0.8	Не обн.
5.49	0.06	3.80	0.22	$S_{o \delta \mu}$	= 1.05	99.51	0.0020	0.0012	»	0.020	0.012	0.4	
2.55	0.06	3.30	1.55	Не обн.	Не обн	. 99.92	0.0044	0.0004	0.0003	0.018	0.010	0.4	2
3.07	0.06	0.07	0.10	0.56	0.66	100.33	0.0028	0.0055	0.0002	0.015	0.038	0.6	100
6.17	0.05	0.23	2.68	Не обн.	Не обн	. 99.56	0.0020	0.0005	Не обн.	0.020	0.010	0.4	Не обн.
3.16	0.10	Не обн.	1.30	>>	»	100.23	0.0023	0.0005	>>	0.028	0.016	0.4	>>
1.60	0.10	5.72	0.14	0.16	0.09	99.71	0.0023	0.0026	0.0010	0.008	0.010	8	3
3.02	0.08	0.84	Не обн.	Не обн.	0.25	100.02	0.0030	0.0044	0.0004	0.022	0.018	2.6	2
4.83	0.10	2.86	2.74	»	Не обн	. 99.91	0.0027	0.0025	0.0017	0.021	0.010	6	2
2.11	0.08	0.35	Не обн.	»	>>	100.33	0.0022	0.0003	0.0006	0.021	0.010	0.4	Не обн.
7.12	0.12	0.44	0.65	0.19	0.56	100.01	0.0024	0.0003	0.0007	0.007	0.010	1.3	>>
6.80	0.06	0.80	Не обн.	Не обн.	Не обн	100.33	0.0036	0.006	Не обн.	0.010	0.014	0.7	>>
3.70	0.05	7.40	»	>>	1.78	99.57	0.0017	Не обн.	»	0.039	0.010	0.6	»
3.45	0.06	2.03	»	»	0.38	99.73	0.0006	»	»	0.021	0.010	0.6	»
5.02	0.11	3.08	5.35	0.19	1.67	99.99	0.0017	0.004	0.0003	0.031	0010	0.6	»
2.63	0.09	0.44	14.35	0.35	4.07	99.86	0.0010	0.0037	0.0003	0.024	0.029	0.5	3
4.04	0.10	0.22	4.62	0.22	3.81	99.71	0.0015	0.0022	0.0009	0.016	0.018	0.4	Не обн.
3.74	Не обн.	Не обн.	0.62	Не обн.	0.89	100.19	-	-	-	-	-	Не обн.	»

ЛОПИЛИТОВОЙ основной массой; текстура пород миндалекаменная. Вкрапленники плагиоклазов, моноклинных и ромбических пироксенов замещаются хлоритом, эпидотом, цеолитами, кальци-TOM; основная масса хлоритизирована, окварцо-вана. На контактах лавовых потоков пропилитизации интенсивность возрастает вследствие большей трещиноватости пород. Отмечаются также единичные маломощные (до 15 м) тела риолитовых туфов, сложенные уплощенными обломками пемз и вулканического стекла. Бурением вскрыта верхняя часть свиты более 600 м.

На породах парусной свиты без видимого углового несогласия лежат туфопесчаники, туфо-галечники, туфоконгломераты, пемзовые туфы и лавы андезитов лебединской свиты (N_2 - Q_1 lb). Преобладают туфогенно-осадочные породы. Разрез толщи начинается и венчается туфокон-гломератами с прослоями туфогалечников, центральная часть сложена однородными туфопес-

чаниками до туфоалевролитов. Для последних характерно обилие обугленных растительных остатков. В туфоконгломератах к туфогалечниках преобладают обломки андезитов андезито-базальтов, а также туфов парусной свиты. Основная масса пород состоит в основном из мелкообломочного и пелитового материала. Грубооб-ломочные породы непрочные: обломки слабо сцементированы, цемент аргиллизирован. Туфопесчаники И туфоалевролиты более плотные, массивные. Лавы андезитов по петрографическим характеристикам аналогичны таковым парусной свиты. Характеристика макро- и микрокомпонентного состава всех пород разреза геотермального месторождения приведена в табл. 1. Исходя из типа пород, резкой изменчивости ИХ фациального состава мощности от разреза к разрезу, мы полагаем, что формирование отложений происходило в относительно изолированных неглубоких бассейнах (озерах или морском

Фиг 1. Схема современной тектонической структуры геотермального месторождения Океанское.

1 - 4 - геологические комплексы, на врезке ("Геолого-геофизические...", 1987): 1 - вулканогенно-кремнисто-диатомовый среднемиоцен-плиоценового возраста, 2 - вулканогенный преимущественно кислого состава среднемиоцен-плиоцено-вый, 3 - андезито-базальтовый среднемиоцен-плиоценовый, 4 - анцезитовый четвертичного возраста; 5 - парусная свита; 6 - лебединская свита; 7 - диориты; 8 - интрузивные туфы (брекчии); 9 - литологические (а) и интрузивные (б) границы, 10 - вулкано-тектонические структуры; 11 - тектонические нарушения и границы тектонических блоков: I - горст ручья Кипящая Речка, II-относительно опущенный блок (вскрытый глубокой скажиной 54), III-тектоно-магматическое (магматическое?) поднятие, IV - горст Старозаводское поле, V -тектоно-магматическое (магматическое?) поднятие - экструзивно-субвулканический комплекс Купол, VI - предположительно то же, нижнего течения р. Серной; 12 - вулканы, с юго-запада на северо-восток: Иван Грозный, Тебенькова, Баранского; 13-кипящий источник "Голубое озеро"; 14-скважины; 15 - границы фигуры на врезке; заштрихованы осевые зоны горстов Старозаводское поле и Кипящая Речка.

заливе) на фоне интенсивной лаво-эксплозивной деятельности правулкана Баранского. Мощность толщи достигает 40 м. Вулканогенные и вулкано-генно-осадочные породы толии значительной степени гидротермально изменены по сравнению с аналогичными отложениями лебединской свиты 38 пределами гидротермальной системы. Здесь верхняя часть разреза 1000 M) представлена (до высокопористыми и трещиноватыми средне- и мелкообломочными туффитами И лавами. Пустоты в породах залечены тридимитом, опалом, халцедоном. В нижней, существенно туфовой части разреза (1000 - 1600 м) отмечается низкотемпературное зеленокаменное перерождение пород.

Средне-верхнечетвертичные лавы, туфы и андезито-базальтового туфобрекчии андезито-дацитового состава формировались, вероятно, в субаэральных условиях при воздымании хребта Грозного. Обломочные представлены псефопсаммитовыми породы литовитрокластическими туфами, сцементированными; пемзовыми псефопсаммитовыми или грубообломочными туфами, пористыми, рыхлыми; игнимбритопо-добными массивными туфами. Лавы имеют ОТ андезитового андезито-базальтового состав; порфировые и сериально-порфировые, пористые. масса андезитов слабо хлорити-зирована и монтмориллонитизирована. Общая мошность толщи не менее 100 - 150 м.

Современные образования включают неизмененные гидротермальными процессами плотные лавы андезитового и андезито-дацитового состава, а также рыхлые грубообломочные делю-виально-пролювиальные отложения мощностью до 30 м в локальных депрессиях.

Близповерхностные и малоглубинные магматические тела представлены дайками и силлами андезито-базальтового и базальтового состава мощностью 0.5 17.0 M, экструзиями андезито-дацитового состава, маломощными (1-5 м) линзами диоритов - микродиоритов. Группы интрузивных тел (по 3 - 6 дайки или силла в каждой) приурочены к литологическим стратиграфическим границам, в частности, к разделу парусной и лебединской свит. На 1000 - 1500 м геотермального месторождения предполагается наличие кровли крупного диоритового тела. Oб свидетельствуют своеобразные породы -интрузивные (автомагматические) брекчии, слагающие обычно экзоконтактовые габбро-диоритовых - гранодиоритовых тел (Рычагов, 1984; "Структура...", 1992). Породы характеризуются одинаковым составом обломков цемента (андезитовым), единичными ксенолитами вмещающих и нижележащих пород, высокой степенью раскристаллизации цемента микродиоритов. Обломки округлы (оплавлены) или их границы

затушеваны вследствие постепенного перехода андезита цемента с гиалокластитовой основной массой в микродиорит или диорит обломка. Обломки диоритов достигают нескольких метров и даже десятков метров, но более типична псефи-товая размерность. Породы массивные плотные $(2.5 - 2.8 \text{ г/см}^3)$ за счет интенсивного гидротермального изменения - окварцевания, эпидотизации. актинолитизации И др. структуре гидротермальных систем экзоконтактовые зоны субинтрузивных тел имеют термо- и рудоконтролирую-щее значение ("Высокотемпературные...", 1991; Рычагов, 1989; "Структура...", 1992).

Тектоническая структура гидротермальной системы определяется блоковым строением территории (фиг. 1). В пределах геотермального месторождения Океанское кровля парусной свиты расположена на абсолютных отметках от +15 до -325 м. В отдельных блоках полностью эродированы отложения лебединской свиты и часть парусной. Максимально подняты породы горстов Кипящая Речка и Старозаводское поле - до 300 - 400 м и, вероятно, более. Горсты представляют собой многоступенчатую систему мелких (100 - 300 м) блоков. К горсту Кипящая Речка примыкает относительно опущенный блок, вскрытый глубокой скважиной 54. Блоки, определяющие структуру гидротермальной системы, вытянуты в радиальном по отношению к вулкану направлении или изометричны; размеры их 600 -1700 м в поперечном сечении, 2000 м по Породы простира-нию. относительно опушенного блока в целом значительно менее нарушены, чем породы горстов. Горсты Кипяшая Речка и Старозаводское поле характеризуются максимальным выносом тепла на дневную поверхность. По аналогии с геотермальными месторождениями Южной Камчатки термовыводящими структурами являются зоны разломов (Жатнуев и др., 1991; "Структура...", 1992), сложенные интенсивно трещино-ватыми породами и брекчиями: тектоническими, эндо- и экзоконтактов экструзивных и субинтрузивных гидротермальными, полимикто-выми комбинированными. Последние брекчии характеризуются различным составом обломков, многостадийностью формирования гидротермального цемента, многократным проявлением процесса брекчирования и обогащены сульфидами железа, меди, свинца, цинка, самородными металлами.

ГИДРОТЕРМЫ

На глубине и на удалении от диоритового тела распространены хлоридно-натриевые углекисло-азотные нейтральные термы с низкой газонасыщенностью и минерализацией от 0.5 до 3.0 г/л, обогащенные Rb, Cs, K, Ga (Пчелкин, 1988). Паро-конденсату на месторождении отвечают серо-

ОИ

Фиг 2. Геологический разрез относительно опущенного блока (II) в центральной части геотермального месторождения, колонка скважина 54. 1 - алевролиты, песчаники и туфоалевролиты, туфопесчаники; 2 - галечники; 3 - туфогалечники; 4 - туфоконгломераты; 5 - туфы псефитовые андезитового и андезито-дацитового состава; 6 - то же, псаммитовые туфы; 7 - игнимбриты и пемзовые туфы андезито-дацитового до дацитового состава; 8 - интрузивные туфы (интрузивные брекчии); 9-эффузивы, дайки и силлы андезито-базальтового и андезитового состава; 10 - грубообломочные делювиальные отложения; 11 -стратиграфичес-кие границы; 12 - зоны трещиноватости; 13-тектонические брекчии; 14-брекчии эндо- и экзоконтактов лавовых потоков, даек, силл; 15-гидротермальныебрекчии; 16 - полимиктовые (комбинированные) брекчии; 17 - участки повышенной пористости пород; 18 - границы тектонических зон и фаций метасоматитов; 19 - средне-температурные пропилиты; 20 - низко-среднетемпературные пропилиты; 21 -низкотемпературные пропилиты; 22-опал-каолинит-алунитовые породы зоны кислотного выщелачивания; 23 - гидротермалиты зоны перехода "жидкость-пар"; 24 - повышенное содержание эпидота в породах; 25 - то же, сульфидов; 26 - границы геохимических аномалий. В последей графе показано развитие в разрезе гидротермальных минералов (пунктир - редкие находки, сплошная линия - устойчивые содержания); тдм - тридимит, кбл - кристобалит, опл - опал, хлц - халцедон, алн - алунит, го-Fe - гидроксиды железа, клн - каолинит, мнм - монтмориллонит, хлр - хлорит, клц - кальцит, анг - ангидрит, бар - барит, лмт - ломонтин, гсл - гидрослюда, квц - кварц, адл - адуляр, эпд - эпидот, врк - вайракит, пнт - пренит, сфд - сульфиды.

водородно-углекислосульфатные воды с минерализацией от 0.15 до 2.0 г/л. В них мало кремне-кислоты, а насыщенность углекислотой, азотом, сероводородом высокая (Пчелкин, 1988). Источники ИЗ поверхностного водоносного -сероводородные, слабокислые субнейтральные. Вода гидросольфатарных полей существенно сульфатная, от нейтральной до кислой, температуры выше 80°С. Кислые воды обогащены А1 и Fe, а по району Кипящей Речки и As, Ba. Гидротермы месторождения отличает повышенное содержание водорода ("Голубые озера"), что может быть обусловлено близостью дневной поверхности промежуточного магматического очага или высокой восстановительной способностью гидротермального бассейна на глубине (Знаменский, Никитина, 1985).

ГИДРОТЕРМАЛЬНО-МЕТАСОМ АТИЧЕСКИЕ ИЗМЕНЕНИЯ

В пределах геотермального месторождения Океанское выделяется несколько типов гидротермально-измененных пород (фиг. 2).

1. Кварц-хлорит альбит-слюдистые пропилиты с эпидотом, цеолитами, карбонатами, сульфидами. В керне скважин 64 и 65 на глубине 40 - 550 м и в призабойной части скважины 54 (1000 - 1200 м) обнаружены агрегаты зерен граната - гроссуляра (А.Ф. Черняева), развивающегося в кавернах и пустотах на кварцевой подложке. Хлорит пред ставлен шамозитом, слюда - мусковитом 1М,

цеолиты - в основном ломонтитом, а карбонаты - кальцитом, сульфиды - пиритом.

В экзоконтактовой зоне предполагаемого субинтрузивного тела диоритов ромбические и моноклинные пироксены, а также хлоритизиро-ванный цемент замещены эпидотом, плагиоклазы выщелочены. Эпидот в форме удлиненных кристаллов и радиально-лучистых агрегатов также приурочен к кавернам, залеченным кварцем, самостоятельно выполняет пустоты и трещины.

Кварц-хлорит-альбит-слюдистые пропилиты распространены в интервале глубин 500 - 1200 м и, вероятно, глубже. Изменениям этого типа подвержены в основном туфы парусной свиты и интрузивные брекчии.

2. Кварц-хлорит-кальцит-цеолитовые пропили ты с гидрослюдами, ангидритом, эпидотом, суль фидами. Пропилиты образуются в верхней части разреза парусной свиты и в нижней - лебединской толщи. Цемент туфов и туффитов, а также ос новная масса лав андезитов хлоритизирована,

микролиты плагиоклаза замещены ломонтитом, серицитом, эпидотом. Плагиоклаз вкрапленников замещен цеолитами, ангидритом, кальцитом.

Сульфиды рассеяны в основной массе пород и вместе с кварцем, кальцитом и ангидритом выпол-

няют поры и трещины. Метасоматиты обычно трещиноватые, непрочные. На участках, где процессы пропилитизации проявились наиболее активно, базис туфов и туффитов почти полностью серицитизирован окварцован, карбонатизиро-ван, меньшей степени хлоритизирован. Реликты альбитизированных и эпидотизированных плагиоклазов замещаются серицитом. Обломки базальтов, андезитов и дацитов претерпевают такое же перерождение, что И базис. Гидрослюда локализуется вокруг обломков, образуя оторочки.

3. Кварц-кальцит-цеолит-гидрослюдистые пропилиты и продукты их аргиллизации, с пиритом и отдельными кристаллами адуляра, ангидрита, пре-нита. Пропилиты представлены двумя фациями: цеолитовой и трансильванской.

Цеолитовая пропилитизация характеризуется развитием вайракита, ломонтита, реже анальци-ма, гидрослюды, хлорита и пренита. Вайракит образует гранобластово-микропойкилитовый агрегат, замещает плагиоклазы и развивается по основной массе туфов. Ломонтиту свойственны тончайшие выделения в цементе туфов. В кавернах ломонтит нарастает на вайракит. Анальцим развивается в пустотах, где образует тонкодисперсные агрегаты с хлоритом. В базисе присутствует гидрослюдисто-хлорит-цеолитовый микроагрегат, в котором невозможно отличить хлорит предшествующих пропилитов. Гидрослюды развиваются не только по основной массе пород, но замещают плагиоклазы и обломки. В данных пропилитах встречается собственно гидрослюда (А : В ≈ 85 : 15) и гидрослюда деградированная (A : B \approx 75 : 25), что соответствует классификации Б.И. Омельяненко и др. (1988). Пустоты, стенки которых инкрустированы игольчатыми кристаллами эпидота, нередко заполнены наросшими на него тонкоигольчатыми друзами β-леонгардита. Он установлен по рентгенометрическому критерию В.И. Гугушвили (1980). В цео-литизированном хлоритизированном И базисе встречаются кристаллы пренита. В некоторых случаях ломонтит и вайракит развиваются совместно с пренитом, иногда он доминирует. Пренит часто замещает плагиоклазы.

Зоны трансильванской пропилитизации характеризуются развитием хлорита, гидрослюды, карбоната, кварца, адуляра и пирита. По основной массе туфов образуется хлорит двух генераций: железистый) ранний (более c травяно-зеле-ной и поздний с голубовато-серой интерференционной окраской. базисе присутствует хлорит-гидрослюдистом кальцит. Многие темноцветные минералы замешены зонально хлоритом, карбо-натизированы, окварцованы; реже плагиоклазы зонально гидрослюдизированы и В карбонатизиро-ваны. цементе окварцевание развито в форме заполнения пор или пустот. К участкам

Таблица 2. Предполагаемые зоны перехода "жидкость-пар" в разрезах скважин геотермального месторождения Океанское

·	анск		×	0, M	are in samuel process	SOCIAL (Thensen, 1988)	а модеоророзочего	
№ п.п. Ж скважины		Интервал, м	Мощность, м	Положение кровли зон относительно уровня моря, м	Минеральная ассоциация	Степень дробления пород	Тектоническая привязка	
1	54	406 - 408	2	-131	Кварц-адуляр-вайракит	Трещинная зона	Относительно опущенный и	
?	54	540 - 622	82	-265	Кварц-адуляр-эпидот	Гидротермальная брекчия	"монолитный" блок II	
3	54	699 - 714	15	-424	Кварц-адуляр-эпидот- вайракит	Трещинная зона	етуконоститься ониутося асволя	
4	55	130 - 230	100	+270	Кварц-пренит	Гидротермальная брекчия	То же, граница блока II	
5	8K	275 - 320	45	+25	Кварц-адуляр	Тектонические брекчии	Тектоно- магматическое	
6	8K	424 - 460	36	-124	Кварц-адуляр-эпидот- вайракит	Трещиноватые породы	(магматическое?) поднятие	
7	8K	600 - 601	1	-300	Кварц-адуляр-эпидот- вайракит	Гидротермальные брекчии	граница блока III	
8	8K	637 - 638	1	-337		Трещинная зона	»	
9	57	220 - 270	50	+155	Кварц-вайракит- рудные + гидрослюды	Трещинная зона	Горст Старозаводское поле, блок IV	
10	64	390 - 460	≥70	-60	Кварц-адуляр-пренит- вайракит-эпидот-рудные	Тектоническая брекчия	» »	
11	65	40 - 200	≤160	+335	Кварц-адуляр-вайракит- рудные	Трещинная зона	(A 15 Menistera) Sycretic sia kilsh	
12	3K	95 - 110	15	+5	Кварц-адуляр	Гидротермальная брекчия	Горст Кипящая Речка, граница блока I	
13	59	475 - 525	≥50	-200	Кварц-адуляр-эпидот + + хлорит	Гидротермальная брекчия	То же, близ осевой зоны	
14	53	180 - 200	≥20	+120	Кварц-адуляр	Трещиноватые породы	Горст Кипящая Речка, блок I	
15	72	270 - 320	50	+55	Кварц-адуляр	Трещинная зона	Опереющая сеть нарушений	

окварцевания приурочен пирит. Хлоритизация вверх по разрезу сменяется развитием смешано-слойных иллит-смектитовых минералов и монтмориллонита. Изменениями этого типа затронуты туфогенно-осадочные отложения лебедин-ской свиты, средне-верхнечетвертичные туфы, пемзы и туфоконгломераты, трещиноватые лавы. Мощность зоны пропилитов невелика (до 250 м), во многих разрезах она отсутствует.

В целом в недрах геотермального месторождения Океанское происходит постепенная смена пропилитов снизу вверх: от кварц-хлорит-альбит-слюдистых через кварц-хлорит-кальцит-цеоли-товые до кварц-кальцит-цеолит-гидрослюдистых, за счет уменьшения РТ-параметров и изменения состава растворов. Приведенные данные свидетельствуют о широком развитии слюдистых ми-

нералов в недрах месторождения. Они образуют в сменяющих друг друга пропилитах генетический ряд минералов с нарастающим содержанием смектитовых межслоев: мусковит (серицит) — тидрослюда — деградированная гидро-слюда. Такая тенденция в распределении разновидностей слюд определяется снижением температурных условий их образования (Омельяненко и др., 1988; Самсонова, Русинова, 1987).

4. Образования кислотного выщелачивания: опал-каолинит-алунитовые метасоматиты зоны сернокислотного выщелачивания с тридимитом, халцедоном, пиритом, переходящие ниже в продукты хлоридно-углекислого выщелачивания (смектиты). последних присутствуют иллит-смектиты. хлорит. каолинит, высококремнистые цеолиты (морденит, клиноптилолит), минералы

кремнезема, пирит, карбонаты, гидроокислы железа.

• Основным слоистым силикатом продуктов хлоридно-углекислого выщелачивания является диоктаэдрический смектит. В первую очередь смектитизируется связующая масса пород. Вкрапленники плагиоклазов и пироксенов сохраняются лучше. В глинистой массе постоянно присутствует α-кристобалит, подтвержденный рентгенострук-турным анализом. верхних зоны хлоридно-углекислого выщелачивания появляется каолинит в виде тонкочешуйчатых агрегатов на наиболее проницаемых участках пород.

Зона хлоридно-углекислого выщелачивания вверх по разрезу переходит в серные опалиты -продукты сернокислотного выщелачивания. Среопал-каолинитовая, них выделяются опал-алу-нитовая опалитовая Смена основных (монокварцитовая) 30НЫ. парагенезисов в толще серных опалитов говорит о нарастающем снизу вверх ультракислотном выщелачивании пород. Показательно изменение состава сульфидов железа: от марказита внизу через пирит к лимониту вверху.

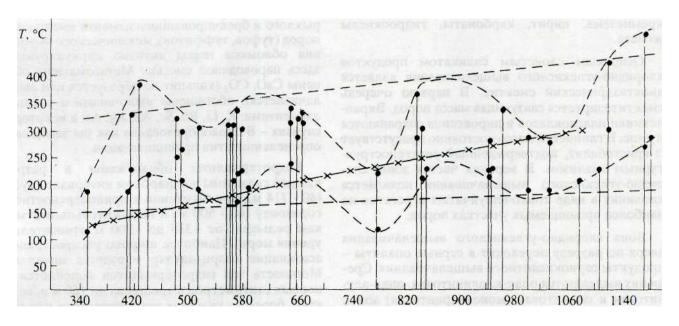
Описанные продукты кислотного выщелачивания образуют "шапку" аргиллизитов мощностью от 30 - 50 до 225 м на всей площади геотермального месторождения. Слабо изменены только позднеголоценовые (?) лавы андезитов и андезито-базальтов. Средняя мощность зоны кислотного выщелачивания на месторождении составляет 100 - 120 м. Каолинитизация и алунити-зация пород по открытым тектоническим нарушениям распространяется до глубин 400 - 500 м в структурах грабенов и 200 - 250 м - в пределах горстов.

Под опал-каолинит-алунитовыми метасома-титами и в пределах метасоматитов открытые поры и микротрещины на 75 - 80% выполнены тридимитом. Образуется вязкая и плотная толща. Мощность участков пород, "пропитанных" тридимитом, достигает 150 - 200 м над зонами интенсивного кипения перегретого флюида.

5. Определенный тип изменений характеризует области перехода "жидкость-пар" (Жатнуев и др., 1991; Рычагов, 1993; "Структура...", 1992). Породы здесь нацело замещены агрегатом кварц-адуляр, кварц-адуляр-вайракит или другими ассоциациями вторичных минералов (табл. 2). В основе ассоциаций лежит тонкокриптокристал-лический, реже мозаичный, кварц почти всегда адуляр. Содержание кремнекислоты - не менее 65 - 70 масс. %, $K_2O - 2$ - 8 масс. %. Новообразования массивны за счет выполнения мелких пор и пустот кварцем, адуляром, вайракитом, пренитом, эпидотом. Одновременно для них характерно большое количество крупных пор и пустот, образованных путем выщелачивания изначально

рыхлого и брекчированного цемента вмещающих пород (туфов, туффитов), механического вымыва-ния обломков пород активно циркулирующей здесь пароводяной смесью. Метасоматиты обеднены СаО, СО2 (кальцит не образуется или выщелачивается), обогащены щелочными и рудными элементами: К, Li, Rb, Sc, As; в некоторых случаях -Au, Ag, Новообразования как бы завершают определенный тип пропилитизации.

Гидротермалиты обнаружены в разрезе каждой скважины и в широком интервале глубин (40 - 714 м), при тяготении к приповерхностному горизонту (40 - 500 м) и положительным отметкам рельефа (от +335 до -200 м относительно уровня моря). Наиболее широко распространена ассоциация кварц-адуляр + рудные минералы. Мощность зон гидротермалитов колеблется от первых сантиметров в трещинах до 160 м и, вероятно, более на участках тектонического или гидротермального брекчирования пород. Мощность зон в пределах горстов в среднем значительно больше, чем в других блоках. Здесь же образуются наиболее ярко выраженные и крупнокристаллические формы адуляра, эпидота, вайракита, пренита. Некоторые другие параметры гидротермалитов и особенности их структурного контроля отмечены в работе (Рычагов, 1993).


ТЕМПЕРАТУРЫ ГИДРОТЕРМАЛЬНОГО МИНЕРАЛООБРАЗОВАНИЯ ПО ДАННЫМ ИЗУЧЕНИЯ ГАЗОЖИДКИХ ВКЛЮЧЕНИЙ

Для установления термодинамических параметров минералообразующих растворов, заключенных в кристалле минерала в виде включений, использованы наиболее широко применяемые методы - гомогенизация и декрепитация.

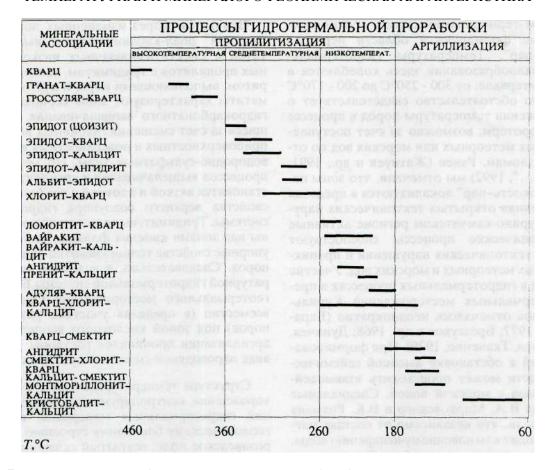
Гомогенизация газожидких и твердо-газожидких включений (ГЖВ и ТГЖВ) осуществлялась по методике и в камере Н.П. Ермакова (Ермаков, 1972). До помещения препарата в термокамеру определялся тип включения, процентное соотношение газовой, жидкой и твердой фаз. Режим нагрева препарата составлял 2 - 4°С/мин, точность замеров - 1 - 2°С.

Температуры декрепитации ГЖВ устанавливались на декрепитографе ВД-4. Нагревание монофракций минералов проводилось ступенчато. При интерпретации результатов учитывались следующие основные положения:

- 1) температуре минералообразования соот ветствует только начало массового растрески вания ГЖВ:
- 2) для многих минералов, помимо взрывов ГЖВ, с определенных температур начинается растрес кивание, не имеющее отношения к взрыву включе ний; в этих случаях проводились дополнительные исследования.

Фиг. 3. Распределение температур гомогенизации и декрепитации ГЖВ и ТГЖВ (точки - конкретные значения, пунктирные линии — кривые распределения) и усредненная кривая термокаротажа в разрезе скважины 54.

Анализировались включения в кальците, кварце, адуляре, ангидрите, эпидоте, вайраките, прените, все — в мономинеральной фазе или в ассоциации с другими гидротермальными минералами. При классификации включений принят принцип их происхождения (Ермаков, 1972). Использовались первичные включения, учитывая, что степень несоответствия физико-химических параметров- флюида из первичного включения и минералообразующих растворов незначительна (Ермаков, 1972). Среди первичных включений выделено три типа вакуолей. Каждый тип обладает своими морфологическими особенностями, характером расположения в кристалле минерала, фазовым состоянием и температурой гомогенизации вакуолей.


Первый тип вакуолей отличается правильными формами (отрицательного кристалла). Для них характерно газожидкое и твердо-газожидкое фазовое состояние. Минерал-узник по показателю преломления представлен галитом и реже ангидритом. Температура гомогенизации включений составляет 300 - 460°С. Подобные вакуоли обнаружены в кварце, кальците, эпидоте и частично в ангидрите.

Второй тип вакуолей характеризуется реликтами прямоугольных и гексагональных форм. Располагаются они вдоль границ между двумя растущими участками, образуя ряды, либо в виде субпараллельных групп. Включения в основном газожидкие, но для их вакуолей характерно ме-тастабильное состояние, выражающееся в выпадении твердой фазы при нагревании включений до 120 - 180°C; твердая фаза в них представлена

галитом. При дальнейшем нагревании твердая фаза растворяется. Температура гомогенизации включений второго типа составляет 180 - 290°С; вакуоли характерны для кварца, кальцита, адуляра, вайракита, пренита, ангидрита.

Третий тип вакуолей отличается большим разнообразием форм и имеет сложную картину распределения в плоскости, часто подчеркиваются зоны роста. Фазовое состояние включений газожидкое, гомогенизация происходит при температуре 80 - 150°C. Включения характерны для кальцита и редко - для ангидрита.

Обращает на себя внимание сходство температур гомогенизации и декрепитации, что позволяет интерпретировать их как температуры минералообразующих растворов (Коробов и др., 1990; Наумов, 1968; Наумов, Ходаковский, 1968). В целом, очевидна тенденция охлаждения гидротермальных растворов снизу вверх по разрезам (фиг. 3). Эта тенденция особенно четко проявлена для растворов включений из "сквозных" минералов -кварца (400 - 180°C) и кальцита (300 - 90°C). Высоко- и низкотемпературные минеральные ассоциации часто пространственно совмещены. Наличие кварц-гранатовой ассоциации (фиг. 4) свидетельствует проявлении недрах 0 месторождения процесса геотермального высокотемпературной пропилитизации. Этот процесс носит локальный характер на фоне среднетемпературной пропили-тизации, пятна" образуются "горячие по M.M. Ва-силевскому (1973).Эпидот-кварцевая, эпидот-кальцитовая, эпидот-ангидритовая, альбитова, хлорит-кварцевая И кальцит-хлоритовая ассоциа-ции равновесный парагенезис, соответ-

Фиг. 4. Температурные условия гидротермального изменения пород и образования минералов из растворов геотермального месторождения Океанское.

ствующий среднетемпературной пропилитизации (Коржинский, 1957). Процесс низкотемпературной пропилитизации описывается вайракит-каль-цитовой, ломонтит-кварцевой, пренит-кальци-товой, адуляр-кварцевой, кварц-хлорид-кальци-товой ассоциациями. Температурный интервал образования смешанослойных минералов, монтмориллонита кристобалита по данным гомогенизации включений в кварце и кальците, образовавшихся чуть раньше или позже минералов-термометров, составляет соответственно 180 - 135°C, 160 -130°C, 110 - 80°C. Эти минеральные ассоциации и значения температур соответствуют процессу гидротермальной аргиллизации (Коржинский, 1957).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ: ТЕМПЕРАТУРНЫЙ И ГЕОХИМИЧЕСКИЙ РЕЖИМЫ ГИДРОТЕРМАЛЬНОГО МИНЕРАЛООБРАЗОВАНИЯ

Изложенные данные свидетельствуют о том, что в недрах геотермального месторождения Океанское в настоящее время идет активный процесс гидротермально-метасоматического перерождения вулканогенных, вулканогенно-осадоч-

ных и интрузивных пород под влиянием высокотемпературных (до 300°С и, вероятно, выше) трещинных И трещинно-поровых сероводородно-углекисло-сульфатных И углекисло-азотных хлоридно-натриевых вол. Средне-, до высокотемпературных пропилиты (300 - 450°C) кварц-хлорит-альбит-слюдистого состава формируются в основании разреза (глубже 500 м от дневной поверхности) и в экзоконтактовой зоне предполагаемого крупного диоритового тела. Выше происходит смена данных пропилитов на низко-среднетемпе-ратурные кварц-хлорит-кальцит-цеолитовые. пропилитизация квари-кальшит цеолит-гидрослюдистыми образованиями с широким развитием них смешанослойных В иллит-смекти-товых минералов монтмориллонита. Температуры растворов, находящихся В равновесии с последними пропилитами, не превышают 180 -200°С. Таким образом, происходит последовательная смена высоко-среднетемператур-ной режима пропилитизации пород на низкотемпературную снизу вверх, соответственно с изменением состава и температуры гидротермального флюида и в зависимости от геологической структуры месторождения.

В особом термодинамическом и геохимическом режиме формируются области перехода "жидкость-пар". Температуры гидротермального минералообразования здесь колеблются в широком интервале: от 300 - 250°C до 200 - 170°C и ниже. Это обстоятельство свидетельствует о резком снижении температуры пород в процессе кипения гидротерм, возможно за счет поступления холодных метеорных или морских вод по открытым разломам. Ранее (Жатнуев и др., 1991; "Структура...", 1992) мы отмечали, что зоны перехода "жидкость-пар" локализуются в пределах области влияния открытых тектонических нарушений. В курило-камчатском регионе активные сейсмотектонические процессы способствуют раскрытию тектонических нарушений и проникновению в них метеорных и морских вод. Участие морских вод в гидротермальных процессах в пределах геотермальных месторождений Курильских островоь отмечалось неоднократно (Барабанов Л.Н., 1977; Брезгунов и др., 1968; Дуничев, 1973; Кононов, Ткаченко, 1970). При формировании интрузий в обстановке высокой сейсмической активности может происходить взаимодействие расплава с морской водой. Специальные исследования В.А. Марковского и В.К. Ротмана (1988) показали, что независимо от состава магмы это приводит к мгновенному испарению воды, вызывающему взрыв, который дробит застывающий расплав и вмещающие породы. Гидротермальные растворы испытывают резкое охлаждение. Такие зоны резкого охлаждения пород фиксирует, в частности, ангидрит. Так, ангидрит распространен в разрезе скважины 54 на глубинах 785 - 925 м при перепаде температур вторичного минералообразования от 460 - 360°C до 190°С. В схожих условиях формируется ангидрит из измененных базальтов на геотермальном поле Рейкьянес, Исландия (Гептнер и др., 1987). Приуроченность ангидрита к участкам дробления с наиболее высоким перепадом температур АР. Гептнер с соавторами объясняют вторжением холодных морских вод в гидротермальную систему в связи с тектоническими подвижками.

Таким образом, проникновение значительных масс метеорных и (или) морских вод в недра высокотемпературной гидротермальной системы может служить одним из спусковых механизмов дробления пород и фактором их охлаждения и в процессе формирования **30H** перехода "жидкость-пар". Зоны характеризуются наличием геохимических барьеров осаждения Au-Ag-K + As + полиметаллы + редкие щелочные элементы. Содержание рудных элементов достигает промышленных концентраций в линзах - жилах мощностью от сантиметров до десятков метров. "жидкость-пар" перехода широко распространены в структурах горстов.

Венчается разрез измененных пород мощной "шапкой" опал-каолинит-алунитовых метасома-титов смектитизированных низкотемпературных пропилитов с тридимитом, халцедоном и пиритом, выполняющими поры и пустоты. Метасо-матиты характеризуют зоны сернокислотного гидрокарбонатного выщелачивания, формирующиеся за смешения глубинных нейтральных, приповерхностных И поверхностных кислых серо-водородно-сульфатных терм. По процессов выщелачивания аргиллизации толща становится вязкой и плотной и все более обретает свойства верхнего водоупора гидротермальной системы. Тридимит, выполняющий поры и трещины над зонами кипения флюида, усиливает водоупорные свойства кислотно-выщелоченных Следовательно, в условиях высокотемпературной Баранского гидротермальной системы геотермального месторождения Океанское повсеместно (в пределах участков разуплотнения пород) под зоной кислотного выщелачивания и аргиллизации пропилитов растворы находятся в виде пароводяной смеси или сухого пара.

Структура температурного поля в недрах месторождения, контролирующего развитие ассоциаций гидротермальных минералов, подчиняется геологическому блоковому строению. Горст Старозаводское поле, вскрытый скважинами 7К, 64, представляет собой 1). высокопро-гретых пород. Скважины находятся в пределах или в непосредственной близости от осевой зоны разлома горста и фиксируют фронт температурного купола. В пределах горста Кипящая Речка максимальный подъем фронта высокотемпературного теплового потока. минералого-петрографических согласно геолого-структурных данных, приходится также на осевую зону разломов (скважина 59) и границы блока (скважины 56, ЗК). Для разреза скважины 59 характерен резкий рост градиента температур вторичного минералообразования на интервале 400 - 500 м. Здесь вскрыта толща массивных игнимбритов, обладающих свойствами водоупора. По-видимому, в случае продолжения бурения могла быть вскрыта кровля экзоконтактовой зоны теплового источника (субинтрузивного тела) на интервале 500 - 700 м. Зона, как и в других случаях ("Высокотемпературные..." 1991; 1993; Рычагов, "Структура...", 1992), может являться глубинным высокотемпературным горизонтом. Особенностью структуры температурного поля в недрах горста Кипящая Речка служит интенсивное охлаждение верхних горизонтов (до 200 м) отдельных участков блока (скважина 53) на некотором удалении от осевой зоны разломов. Вследствие этого участки высокопрогретых пород чередуются с охлажденными трещиноватыми участками. По-видимому, в дальнейшем необходимо изучить механизмы проникновения больших масс поверхностных

морских вод на значительную глубину в зонах восходящего теплового потока. Относительно опущенный блок (скважина 54) характеризуется постепенным нарастанием температур гидротермального минералообразования от 130 - 150°С в приповерхностном горизонте до 350 - 470°С на глубине 1000 - 1200 м. Сходная картина наблюдается в разрезе тектоно-магматического поднятия (скважина 8К). В пределах экзоконтактовых зон предполагаемого диоритового тела градиент температуры гидротермального минералообразования резко возрастает. Эти зоны характеризуются и особым геохимическим режимом - формируются кварц-эпидозиты с гранатом и рудными минералами.

Таким образом, температурное поле в недрах геотермального месторождения Океанское, по данным изучения ассоциаций вторичных минералов, имеет современное происхождение и характеризуется неоднородным строением: устойчивыми высокими значениями в пределах горстов с интенсивным охлаждением пород на отдельных участках в верхних горизонтах месторождения, постепенным увеличением значений температур на глубину в относительно опущенных блоках и тектоно-магматических поднятиях, высокими градиентами значений температур экзоконтак-товой зоне предполагаемого субинтрузивного тела. Широкое развитие в недрах месторождения имеют особые термодинамические зоны перехода "жидкость-пар". Здесь происходит падение температуры минералообразования, формирование геохимических барьеров на ряд рудных и нерудных компонентов, образуются области сухого пара на большой глубине или в верхних горизонтах месторождения при высоких температурах вмещающих пород.

Авторы признательны В.И. Белоусову и СИ. Набоко за поддержку направления работ, И.Г. Завадскому, С.В. Кореневой, Г.П. Королевой, В.М. Ладыгину, С.В. Москалевой, В.И. Пчел-кину, Я.А. Рихтеру, Н.М. Ульзутуеву за помощь в полевых исследованиях, И.Ф. Делеменю и другим специалистам за обсуждение основных положений статьи.

СПИСОК ЛИТЕРАТУРЫ

Барабанов Л.Н. Химические равновесия и зональность термальных вод Курильских островов // Гидротермальный процесс в областях тектоно-магматической активности. М.: Наука, 1977. С. 155 - 163.

Брезгунов В.С.Дуничев В.М., Зотов А.В. и др. К вопросу генезиса термальных вод вулкана Менделеева (о-в Кунашир) // Докл. АН СССР. 1968. Т. 179. № 1. С. 179- 182.

Василевский М.М. Вулканизм, пропилитизация и ору-денение. М.: Наука, 1973.

Высокотемпературные гидротермальные резервуары. М.: Наука, 1991.

Геолого-геофизический атлас Курило-Камчатской островной системы / Под ред. *Сергеева К.Ф., Красного МЛ.* Л.: ВСЕГЕИ, 1987.

Гептнер А.Р., Кристманнсдохтир Х., Селезнева М.А. Вторичные минералы базальтоидов, измененных гидротермальным рассолом на полуострове Рейкьянес (Исландия) // Литология и полез. ископаемые. 1987. №2. С. 25-41.

Горшков Г.С. Вулканизм Курильской островной дуги. М.: Наука, 1967.

Гугушвили В.И. Поствулканический процесс и формирование месторождений полезных ископаемых в древних островных дугах и интрадуговых рифтах (на примере Аджаро-Триалетской зоны Кавказа). Тбилиси: Мецниереба, 1980.

Дуничев В.М. Парагидротермы Горячего Пляжа и перспективы использования термальных вод Курильских островов // Изучение и использование глубинного тепла Земли. М.: Наука, 1973. С. 226 - 229.

Ермаков Н.П. Геохимические системы включений в минералах. М.: Недра, 1972.

Жатнуев Н.С., Рычагов С.Н., Миронов А.Г. и др. Пародоминирующая система и геохимический барьер жидкость-пар Верхнего термального поля Паужет-ского месторождения // Вулканология и сейсмология. 1991. № 1. С. 62-78.

Злобин Т.К. Строение литосферы в районе о. Итуруп по сейсмическим данным // Тихоокеанская геология. 1989. №3. С. 33-41.

Злобин Т.К., Знаменский В.С. Геология и глубинное строение геотермального района (о-в Итуруп) // Геология руд. месторождений, 1991. № 4. С. 3 - 15.

Знаменский В.С. Гидротермально измененные породы Мутновского (Камчатка) и Кипящего (о-в Итуруп) геотермальных месторождений // Изв. АН СССР. Сер. геол. 1991. №5. С. 110- 123

Знаменский В.С., Никитина И.Б. Гидротермы центральной части острова Итуруп (Курильские острова) // Вулканология и сейсмология. 1985. № 5. С. 44 - 65.

Кононов В.И., Ткаченко Р.И. Особенности формирования береговых терм // Современные минерало-образующие растворы. Петропавловск-Камчатский, 1970. С. 11.

Коржинский Д.С. Физико-химические основы анализа парагенезисов минералов. М.: Изд-во АН СССР, 1957.

Коробов А.Д., Гончаренко О.П., Рихмер Я.А. Стадийность постмагматических процессов и современное глинообразование Паужетского геотермального поля (Южная Камчатка). Саратов: СГУ, 1990. 139 с. Деп. в ВИНИТИ 15.01.90. № 261-В90.

Марковский Б.А., Ромман В.К. Особенности вулканизма и гидротермальной деятельности ранних стадий развития островных дуг // Вулканология и сейсмология. 1988. № 5. С. 35 - 41.

Мархинин Е.К., Стратула Д.С Гидротермы Курильских островов. М.: Наука, 1977.

Наумов В.Б. К вопросу об определении температур минералообразования методом декрепитации // Минералогическая термометрия и барометрия. М.: Наука, 1968. Т. II. С. 37-43.

Наумов В.Б., Ходаковский ИЛ. Температуры образования минералов по данным изучения включений минералообразующих сред // Минералогическая термометрия и барометрия. М.: Наука, 1968. Т. II. С. 136-140.

Омельяненко Б.И., Андреева О.В., Воловикова И.М. Тонкочешуйчатые диоктаэдрические калиевые слоистые силикаты ураноносных околорудных метасомати-тов // Изв. АН СССР. Сер. геол. 1988. № 8. С. 79 - 91.

Пчелкин В.И. К методике поисков термальных вод в районах современного вулканизма (на примере центральной части о-ва Итуруп) // Всесоюзное совещание по подземным водам Востока СССР. Иркутск-Ю. Сахалинск, 1988. С. 57 - 58.

Рычагов СИ. Брекчиевая структура геологической среды. Петропавловск-Камчатский, 1989. 62 с. Деп. в ВИНИТИ 04.04.89. № 2138 - B89.

Рычагов С.Н. Гидротермальная система вулкана Баранского, о-в Итуруп: модель геологической структуры // Вулканология и сейсмология. 1993. № 2.

Рычагов С.Н. Кольцевые структурно-вещественные парагенезисы вулканогенных рудных полей. Владивосток: Изд-во ДВНЦ АН СССР, 1984.

Самсонова Н.С., Русинова О.В. Слоистые силикаты -индикаторы зональности околорудных ореолов // Геологические методы поисков и разведки месторождений полезных ископаемых. М.: ВИЭМС, 1987. 49 с.

Структура гидротермальной системы. М.: Наука, 1992.

Elders W.A., Hoagland J.R., Williams A.E. Distribution of hydrothermal mineral zones in the Cerro Prieto geothermal field of Baja California, Mexico // Geothermies. 1981. V. 10. No. 3/4. P. 245 - 253.

Reyes A.G. Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment // J. Vol. Geoth. Res. 1990. No. 43. P. 279 - 309.