Южно-Камбальное Центральное термальное поле: структурное положение, гидрогеохимические и литологические характеристики

 $C.H. \ Pычагов^{1}, \ O.B. \ Kравченко^{1}, \ A.A. \ Hуждаев^{1}, \ M.C. \ Чернов^{2}, \ E.B. \ Kapmaweвa^{1}, \ A.A. \ Kузьмина^{1}$

¹Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский; 683006; e-mail: <u>rychsn@kscnet.ru</u>

На основании первых комплексных исследований Южно-Камбального Центрального термального поля дана характеристика морфоструктуры, физико-химических условий разгрузки парогидротерм, макро- и микрокомпонентного состава термальных вод, литологии толщи гидротермальных глин и состава поровых растворов. Предполагается влияние восходящего щелочного флюида на зону разгрузки парогидротерм.

Введение

Южно-Камбальное Центральное термальное поле (ЮКЦ) входит в состав одной из трех групп "паровых струй" Камбального вулканического хребта Южной Камчатки [5]. Детальное описание термопроявлений (парогазовых струй, водных котлов, прогретых грунтов) и оценка выноса тепла на термальных полях Камбального хребта выполнены В.М. Сугробовым и Н.Г. Сугробовой в 1964-65 гг. [2]. Г.А. Карповым выделены и описаны "псевдошаровые агрегаты арагонита", образующиеся в зоне интенсивной разгрузки парогидротерм на ЮКЦ [4]. А.С. Огородова обратила внимание на особенности геохимии и минералогии этого термального поля: на основании проходки трех скважин ручным буром до глубины 2 м в разрезе толщи гидротермальных глин выделена парагенетическая ассоциация рудных и других минералов, включающая киноварь, пирит, марказит, опал, кальцит, сидерит, родохрозит, аурипигмент, реальгар, антимонит, барит [6]. В последующие годы научные работы на термальных полях Камбального вулканического хребта проводились эпизодически, но ЮКЦ неизменно привлекало повышенное внимание [7].

Исследования авторов настоящего доклада направлены на объяснение причин формирования уникального по своим свойствам Южно-Камбального Центрального термального поля.

Структурное положение вулканического хребта и морфоструктура ЮКП

Камбальный вулканический хребет представляет собой резургентное тектономагматическое поднятие в Паужетской вулкано-тектонической депрессии [3] и расположен в зоне сочленения крупнейших структурных элементов Южной Камчатки: Ункановичского горста и Южно-Камчатского прогиба [1]. Сочленение этих геологических структур характеризуется как зона глубинного длительноживущего (с нижнего миоцена по голоцен) разлома северо-восточного-субмеридонального простирания. Камбальный вулканический хребет на четвертичном этапе развития Паужетской депрессии наследует фрагмент глубинного разлома. По-видимому, этим определяется высокий геотермальный потенциал Камбального хребта: на протяжении 18 км вдоль его осевой части происходит разгрузка парогидротерм в пределах трех групп термальных полей, все породы (за исключением позднечетвертичных базальтов и крупных интрузий) интенсивно изменены вплоть до гидротермальных глин. Общий вынос тепла сопоставим с таковым Кошелевского вулканического массива, Мутновской, Узон-Гейзерной и другими системами Камчатки. На основании обобщения структурных, гидрогеотермических и других данных мы полагаем, что в недрах Камбального хребта расположены три крупные гидротермальные системы, вероятно, имеющие гидродинамическую связь и единое тепловое и водное питание.

 $^{^2}$ Геологический факультет МГУ имени М.В. Ломоносова, Москва

ЮКЦ локализовано в кольцевой морфоструктуре: центральная представляет собой термальное поле, выделяющееся куполообразной структурой интенсивно аргиллизированных пород; по периферии в форме гребня протягиваются останцы лав андезитов (рис. 1). Такая морфоструктура постройки, приуроченность разгрузки тепла к ее центру и наличие уходящей на глубину субвертикальной зоны повышенной электропроводности среды, которая может служить подводящим каналом геотермального теплоносителя (неопубликованные данные вертикального электрического зондирования С.О. Феофилактова и др.), – все это свидетельствует в пользу расположения ЮКЦ в эрозионном кратере небольшого андезитового вулкана. А.С. Нехорошев, В.Л. Сывороткин и другие исследователи выделяют в этой части Камбального хребта крупный плиоцен-плейстоценовый стратовулкан Термальный (Северный Камбальный), осложненный множеством мелких вулканических построек [5, 7].

Рис. 1. Южно-Камбальное Центральное термальное поле. Вид с севера. Вдали – вулкан Камбальный. Фото С.Н. Рычагова.

Фактический материал исследований

В последние годы на площади ЮКЦ нами проведен следующий комплекс исследований: 1) температурная съемка грунтов и определение границ термоаномалии, 2) детальное гидрогеохимическое опробование всех типов природных 3) ежегодное (2017-19 гг.) измерение физико-химических параметров источников и парогазовых струй, 4) изучение распределения ртути во всех средах (грунтах, водах, парогазовой смеси), 5) определение минерального состава отложений на прогретых и остывших участках, 6) изучение состава и структуры толщи гидротермальных глин с помощью проходки скважин колонкового бурения, 7) магнитометрические и геоэлектрические исследования (в данной работе эти результаты не обсуждаются).

Термальное поле (т/п) отличается от других т/п Паужетско-Камбально-Кошелевского геотермального района, прежде всего, контрастностью физикохимических параметров разгружающихся на дневной поверхности термальных вод. pH источников колеблется от 3.6 до 7.5 единиц, притом что воды интенсивно разбавляются метеорными даже в "межень". Общая минерализация достигает 4 г/л. В крупных насыщенных углекислым газом и сернистыми газами котлах (озерах) и пульсирующих источниках центральной части т/п преобладают щелочные гидрокарбонатносульфатные аммониевые (кальций-аммониевые) воды с высоким содержанием многих микроэлементов (редких щелочных, цветных и черных металлов, бора, фосфора, редкоземельных элементов). Обращает на себя внимание постоянно высокое содержание аммония, как в щелочной, так и в кислой термальной воде (таблица). А.С. Нехорошев предполагал, что источником аммония на сольфатарных полях Камбального хребта являются вулканические газы [5].

Таким образом, на ЮКЦ разгружается поток восходящих минерализованных парогидротерм щелочного типа. При смешении с метеорными водами и конденсатом пара формируются кислые термальные воды также с повышенной солевой нагрузкой.

Таблица. Химический состав термальных и других природных вод Южно-Камбального

Центрального термального поля

Тип	T°C	рН	Eh	Макрокомпонентный состав, мг/л							
источн.		•		HCO ₃	SO ₄ ²⁻	Na ⁺	K^{+}	Ca ²⁺	Mg^{2+}	NH ₄ ⁺	Минер.
Кипящ.	38	5.34	-122	21.97	17.2	1.4	0.24	5.58	0.98	15.25	62.62
озеро											
Кипящ. котел	94	7.3	-10	56.12	451.5	11.6	3.51	92.9	14.42	98.85	728.9
Кипящ. котел	93	7.53	-40	36.61	123.0	3.52	0.75	17.15	2.95	44.45	228.43
Пульс. котел	94	7.44	-3	7.32	528.3	11.95	4.47	68.09	9.7	94.6	724.43
Серный котел	74	3.8	+235	-	931.8	1.16	0.4	7.77	3.58	315.0	1259.7
Газир. котел	92	5.1	+128	17.08	2881.8	1.15	0.15	0.37	0.38	1050.0	3950.9
Серный котел	53	3.6	+261	-	1325.6	0.46	0.42	1.05	1.41	502.1	1831.0
Кипящ. котел	91.5	7.0	-196	242.8	1037.4	0.49	0.25	0.78	0.83	450.0	1732.6
Холод. ручей	2.5	7.0	+45	15.86	7.7	2.1	0.21	6.41	1.05	0.22	33.55
Руч. Кратер.	32.6	5.9	-36	12.2	69.0	2.89	0.33	16.74	2.46	16.55	120.17

Примечание: Определения выполнены в АЦ ИВиС ДВО РАН. Аналитики: Л.Н. Гарцева, О.В. Белоус, С.М. Иванова, Е.А. Якимова, А.А. Кузьмина, С.В. Сергеева.

Высокой контрастностью состава и строения характеризуется толща гидротермальных глин. Каждый из 4-х участков т/п, вскрытых скважинами, отличается литологическим строением, химическим и минеральным составами выделенных горизонтов, мощностью зон сернокислотного и углекислотного выщелачивания и другими параметрами. Средняя мощность толщи гидротермальных глин превышает 4 м. Характеристикой, объединяющей всю толщу гидротермальных глин ЮКЦ, является наличие на каждом участке пластичных глин, образующих горизонт мощностью 70-130 см. Как было показано нами на примере Восточно-Паужетского т/п, этот горизонт имеет большое значение в структуре поля: он служит водоупором, тепловым экраном и часто к нему приурочен комплексный геохимический барьер с образованием рудных минеральных ассоциаций (работы С.Н. Рычагова с коллегами, 2015-18 гг.). Кроме того, поровые растворы гидротермальных глин ЮКЦ, как и Восточно-Паужетского т/п, характеризуются аномально высокими концентрациями редких щелочных (Li, Rb, Cs), основных щелочных и щелочноземельных элементов,

черных металлов (Fe, Co, Cr, Ni), иттрия (рис. 2) и других элементов. И гидротермальные глины, и поровые растворы в них выделяются аномально высокими, до ураганных, содержаниями Hg. Эти данные вызывают повышенный интерес к изучению толщи аргиллизитов Южно-Камбального Центрального термального поля.

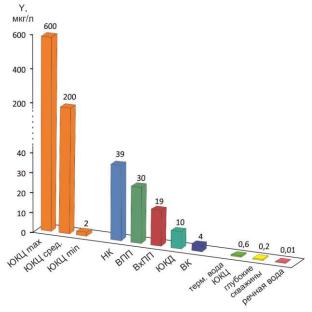


Рис. 2. Содержание иттрия (Y) в поровых растворах гидротермальных глин ЮКЦ и средние значения по другим термальным полям района, в сравнении с концентрацией Y в гидротермах зоны разгрузки и глубоких горизонтов, а также в речных водах района. Термальные поля: НК — Нижне-Кошелевское, ВПП — Восточно-Паужетское, ВхПП — Верхне-Паужетское, ЮКД — Южно-Камбальное Дальнее, ВК — Верхне-Кошелевское.

Заключение

Южно-Камбальное Центральное термальное поле приурочено к одной из крупнейших на Камчатке геотермальных систем, расположенной в недрах Камбального вулканического хребта. Участки термального поля отличаются гидрогеохимическими, литологическими и другими характеристиками, что, по-видимому, обусловлено влиянием щелочного флюида на неоднородную толщу аргиллизированных горных пород и формированием контрастных по своему составу и свойствам термальных вод.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 19-05-00102) и ДВО РАН (18-2-003).

Список литературы

- 1. Апрелков С.Е., Ежов Б.В., Оточкин В.В., Соколков В.А. Вулкано-тектоника Южной Камчатки // Бюлл. вулканол. станций. 1979. № 57. С. 72-78.
- 2. *Белоусов В.И.*, *Сугробов В.М.*, *Сугробова Н.Г.* Геологическое строение и гидрогеологические особенности Паужетской гидротермальной системы // Гидротермальные системы и термальные поля Камчатки. Владивосток: Изд-во ДВНЦ АН СССР, 1976. С. 23-57.
- 3. Долгоживущий центр эндогенной активности Южной Камчатки. М.: Наука, 1980. 172 с.
- 4. *Карпов Г.А.* Псевдошаровые агрегаты арагонита на современном термальном поле Камбального хребта (Камчатка) // Минералогия гидротермальных систем Камчатки и Курильских островов. М.: Наука, 1970. С. 157-165.
- 5. *Нехорошев А.С.* Гидротермальная деятельность района хребта Камбального на Южной Камчатке // Бюлл. вулканол. станций. 1959. № 28. С. 23-32.
- 6. *Огородова А.С.* Современная рудная минерализация в районе Южно-Камбальных паровых струй (Камчатка) // Вулканизм и глубины Земли. М.: Наука, 1971. С. 305-308.
- 7. Структура гидротермальной системы. М.: Наука, 1993. 298 с.