VOLCANIC GAS EMISSIONS FROM THE KURIL ISLAND ARC: GEOCHEMISTRY AND FLUXES

Yuri Taran^{1,2}, Elena Kalacheva¹, Mikhail Zelenski³, Ilya Chaplygin⁴, Natalia Malik¹, Dmitri Melnikov¹, Robin Campion², Ryunosuke Kazahava⁵, Ekaterina Voloshina¹

¹ Institute of Volcanology and Seismology FEB RAS, Petropavlovsk-Kamchatsky, 683006, Russia

The Kuril Island arc extending for about 1200 km from Kamchatka Peninsula to Hokkaido Island is a typical active subduction zone with ~ 40 historically active subaerial volcanoes, some of which are persistently degassing. Seven Kurilian volcanoes (Ebeko, Sinarka, Kuntomintar, Chirinkotan, Pallas, Berg and Kudryavy) on six islands (Paramushir, Shiashkotan, Chirinkotan, Ketoy, Urup and Iturup, Figure 1) emit into the atmosphere > 90% of the total fumarolic gas of the arc. During the field campaigns in 2015-2017 direct sampling of fumaroles, MultiGas measurements of the fumarolic plumes and DOAS remote determinations of the SO₂ flux were conducted on these volcanoes. Maximal measured temperatures of the fumaroles in 2015-2017 were 510 °C (Ebeko), 440 °C (Sinarka), 260°C (Kuntomintar), 720 °C (Pallas), 96°C (Berg) and 820°C (Kudryavy). The total SO₂ flux from fumarolic fields of the studied volcanoes was measured as $\sim 1800 \pm 300$ t/d, and the CO₂ flux is estimated as 1250 ± 400 t/d (See details in Table 1).

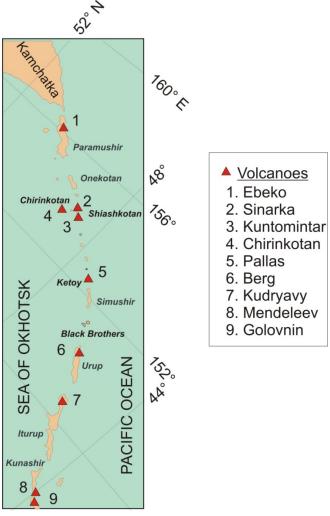


Figure. 1 Location of the studied islands within the Kuril island arc.

² Institute of Geophysics, UNAM, Coyoacan, Ciudad de Mexico, 04510, Mexico

³ Institute of Experimental Mineralogy RAS. Chernogolovka, Moscow District, Russia

⁴ Insitute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, RAS, Moscow, 119067, Russia

⁵ Geological Survey of Japan. Tsukuba, Japan

Geochemical characteristics of the sampled gases include δD and $\delta^{18}O$ of fumarolic condensates, $\delta^{13}C$ of CO_2 , $\delta^{34}S$ of the total sulfur, ratios ${}^3He/{}^4He$ and ${}^{40}Ar/{}^{36}Ar$, concentrations of the major gas species and trace elements in the volcanic gas condensates. The mole ratios C/S are generally <1. All volcanoes of the arc, except the southernmost Mendeleev and Golovnin volcanoes on Kunashir Island, emit gases with ${}^3He/{}^4He$ values of >7R_A (where R_A is the atmospheric ${}^3He/{}^4He$). The highest ${}^3He/{}^4He$ ratios of 8.3R_A were measured in fumaroles of the Pallas volcano (Ketoy Island) in the middle of the arc.

Table 1. Gas fluxes from volcanoes of the Kuril arc in 2015-2017 (ton/day). The SO₂ flux was measured by the mini-DOAS technique. Fluxes for other gases are estimated using MultiGas and average C/S weight ratios for the direct sampled high-temperature fumaroles (see details in Taran et al., 2018)

Volcano	Location	Date	SO ₂ flux	CO ₂ flux	H ₂ S flux	HCl flux
Ebeko	N 46.06, E 150.07	August 12-15 th 2015	100 ± 20			
Ebeko	N 46.06, E 150.07	July 18 th , August 14 th , 2017	250 ± 30	160 ± 100	74 ± 30	46 ± 15
Kuntomintar	N 48°45', E 154°01'	July 18 th 2016	100 ± 30	220 ± 40	35 ± 10	17 ± 6
Sinarka*)	N 48°52', E 154°10'	July 20 th 2016	≥ 100	≥ 40	≥ 60	≥ 20
Chirinkotan	N 48.98, E 153.48	August 12 th , 2017	250 ± 20			
Pallas	N 47°21′, E 152°29′	July 24 th , 2016	480 ± 40	150 ± 20	80 ± 10	95 ± 10
Berg	N 50°41', E 156.01'	August 6 th , 2017	240 ± 50	843 ± 150	220 ± 70	25 ± 10
Kudryavy	N 45°23', E 148°49'	October 15 th and 19 th 2016	330 ± 60			
Kudryavy	N 45°23', E 148°49'	August 26 th , 29 th , September	370± 50	210 ± 40	110 ±	120 ± 20
		6 th , 29 th			20	
Total		2016 - 2017	1800 ±	≥ 1250 ±	> 500	> 310
			300	350		

This study was supported by the Russian Science Foundation grant # 15-17-20011, and also partially by the DCO (for R.K. and R.C) and PASPA-DGAPA-University of Mexico (for Y.T)

Taran Y., Zelenski M., Chaplygin I., et al. Gas emissions from volcanoes of the Kuril Island arc (NW Pacific): geochemistry and fluxes // Geochemistry, Geophysics, Geosystems. 2018. DOI 10.1029/2018GC007477. In Press.