AN OLIVINE-MELT THERMOMETER BASED ON D_{Ni} WITH NO DEPENDENCE ON H$_2$O IN THE MELT: NEW EXPERIMENTAL EVIDENCE

X., Pu1, G., Moore, J1, Touran1,2, J., Gagnon3, R., Lange1.

1Department of Earth and Environment Sciences, University of Michigan, Ann Arbor
2University of California, Davis, CA, 95616, USA
3University of Windsor, Windsor, ON, N9B 3P4, Canada

A new olivine-melt thermometer introduced in [1], which is based on the partitioning of Ni ($D_{Ni}^{ol/liq}$) at crustal conditions ($<$1 GPa), was hypothesized to have a negligible dependence on dissolved H$_2$O content in the melt. This partitioning behavior is in marked contrast to thermometers based on $D_{Mg}^{ol/liq}$. In this study, new olivine-melt equilibrium experiments were conducted on a basaltic glass (9.6 wt% MgO; 352 ppm Ni) under hydrous conditions at 0.5 GPa and anhydrous conditions at 1 bar and 0.5 GPa to compare the effect of dissolved H$_2$O in the melt on $D_{Mg}^{ol/liq}$ and $D_{Ni}^{ol/liq}$. The Ni-thermometer in [1], calibrated on 123 1-bar olivine-melt experiments in the literature, recovers the experimental temperatures for all experimental runs (including hydrous runs where the melts contained at least 4.4 wt% H$_2$O) within an average of 14 degrees, less than the 1-sigma error of the Ni-thermometer ($\pm 29^\circ$C). In contrast, the Mg-thermometer recovers the anhydrous experimental temperatures within error ($\pm 26^\circ$C), but overestimates the experimental temperatures under hydrous conditions by $+88$ to $+141$ degrees. This result underscores that $D_{Ni}^{ol/liq}$ has a negligible dependence on dissolved water content in the melt (up to at least 4.4 wt% H$_2$O), as opposed to $D_{Mg}^{ol/liq}$ which displays a strong dependence. It is proposed that the olivine-melt thermometer based on $D_{Ni}^{ol/liq}$ can be applied to hydrous arc basalts at depths $<$ 1 GPa without corrections for dissolved water in the melt or pressure.