Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian island arcs, N.W. Pacific

G.P. Glasby, A. Cherkashov, G.M. Gavrilenko, V.A. Rashidov, I.B. Slovtsov

Abstract

The Kurile Arc consists of at least 100 submarine volcanoes and 5 submarine caldera located mainly in the rear arc. The arc is seismically very active, particularly in the south, and is characterized by extensive volcanism and hydrothermal activity. At least one subaerial volcano on the arc (Medvezhy located on Iturup island) has an extremely shallow magma chamber and is intensely active. Three types of submarine hydrothermal deposit were recovered from this area, hydrothermal manganese crusts, nontronite and hydrothermal manganese crusts overlain by hydrogenous manganese oxides. In addition, submarine hydrothermal Fe oxyhydroxides enriched in P were sampled from the submerged caldera of Kraternaya Bight in the central part of the arc. These deposits appear to be analogous to deposits from Santorini caldera on the Aegean Arc. Piip submarine volcano located in the western Aleutian Arc is characterized by two shallow summit craters. Both intermediate-temperature (anhydrite, gypsum, barite, amorphous silica, pyrite, calcite and aragonite) and low-temperature (nontronite, Fe oxyhydroxides, hisingerite and ferromanganese crusts) hydrothermal minerals were recovered from this seamount together with bacterial mats and giant clams. The maximum measured temperature of the hydrothermal fluids was 133 °C, although the actual temperature may have reached 250 °C. Both the Kurile and Aleutian Arcs have the potential to host major submarine hydrothermal systems. Detailed exploration of these poorly studied areas using modern geophysical, geochemical and sampling techniques is therefore strongly recommended.

1. Introduction

Over the past decade, knowledge of submarine hydrothermal systems and the accompanying subma-
no corresponding increase in knowledge of submarine hydrothermal systems in the Kurile and western Aleutian Arcs, both of which are located within the Russian Exclusive Economic Zone (E.E.Z.). Furthermore, what literature is available on these two areas is mainly in Russian and therefore difficult to access in the west. This is unfortunate because Kamchatka is one of the most volcanically active regions on Earth (Churikova et al., 2001) and there is strong evidence that parts of the Kurile Arc are equally active suggesting that this arc has the potential to host vigorous submarine hydrothermal systems. However, evidence for this activity is based largely on the study of G.M. Gavrilenko (1997) which deals exclusively with the occurrence of submarine ferromanganese crusts on various island arcs in the Pacific, of which crusts from the central and southern Kurile Arc make up only a part. Furthermore, this study was limited in scope and does not cover all the aspects which might reasonably be expected in a modern study of such deposits. Submarine hydrothermal activity has also been investigated in Kraternaya Bight, a submerged caldera located on Ushishir island in the central part of Kurile Arc. Although much effort was expended in this area by V.G. Tarasov et al. (1990), focussing mainly on biological aspects, this work has resulted in only one major publication in English. Submarine hydrothermal activity and mineralization have also been reported from Piip volcano in the western Aleutian Arc based, in part, on the results of dives of the Mir submersible (Bogdanov and Sagalevich, 2002). In this case, the results were published exclusively in Russian. The results of the studies of these three hydrothermal systems can therefore be classified as provisional and not readily accessible in the west. However, when the geological setting of the Kurile Arc is taken into account, it is clear that at least part of this region has the potential to be a frontier area for the study of world-class submarine hydrothermal systems. We therefore present the available data, much of it in translation and appearing in English for the first time, as a baseline for future studies there.

2. Geological setting of the Kurile arc

The Kurile island chain stretches from Kamchatka in the north to Hokkaido in the south, a distance of about 600 km (Sergeyev and Krasny, 1987). 44 subaerial volcanoes and hydrothermal fields have been reported to occur on 19 islands together with a further 5 submarine volcanoes (Anon, 2002, 2005). These submarine volca-
longitudes of 146° 30′ E to 151° 30′ E at the active volcanic arc which may possibly be related to this zone of higher seismicity. The Kurile Arc is also marked by a sharp bend in the region of Boussole Strait (Avdeiko et al., 1991). By contrast, the northern Kuriles are structurally more similar to southern Kamchatka than to the rest of the arc (Kostenko et al., 1998). The Aleutian Arc is also seismically active in the central and eastern sectors of the arc but much less so in the western sector of the arc in the vicinity of the Vulcanologists Massif where Piip volcano is located (Moore, 1990, 1992).

The role of subduction in the evolution of the Kurile Arc has been documented by a number of authors (Haňus and Vaněk, 1984a,b,c, 1985, 1988; Bailey et al., 1987; Avdeiko et al., 1991; Ryan et al., 1995; Bailey, 1996). In particular, Haňus and Vaněk (1984a,b,c, 1985, 1988) established that the dip of the subducting Pacific slab varies from 31° beneath Kamchatka to 37° in the central Kuriles and 36° in the southern Kuriles and Hokkaido and that the Wadati–Benioff zone in this region is typically 50–65 km deep. Avdeiko et al. (1991) have shown that the Kurile Arc is actually made up of two parallel arcs, a frontal arc with a seismo-focal zone at a depth of 110–140 km and a rear volcanic arc with a seismo-focal zone at a depth of 160–190 km. It was established that more than 55% of all volcanoes are located on the frontal arc and only 20–25% on the rear arc. However, only 13% of the volcanoes in the frontal

![Fig. 1. Shows the locations of 100 submarine volcanoes (closed circles) and 5 submarine caldera (open circles) along the Kurile Arc. 81% of these volcanoes are in the rear arc (after Avdeiko et al., 1992).](image-url)
arc are submarine compared to 81% in the rear arc (Avdeiko et al., 1991; Ishikawa and Tera, 1997). The locations of these submarine volcanoes (including submarine caldera) are shown in Fig. 1.

Quaternary and Neogene volcanic rocks from the Kurile Arc are typical andesite formations (Fedorchenko et al., 1989). The petrology of submarine volcanic rocks has been studied by Ostapenko and Kichina (1977) and Ostapenko (1979). Petrological variations have been observed across the arc (Bailey et al., 1987, 1989; Zhuravlev et al., 1987; Avdeiko et al., 1991; Ryan et al., 1995; Bailey, 1996). These have been attributed to the dehydration of amphibole, 14Å-clinochlore and serpentine at the fore arc and of phlogopite and 7Å-clinochlore at the rear arc (Avdeiko et al., 1991). The dominant rock types within the arc are medium K calc-alkaline lavas with As and Sb contents decreasing across arc (Ryan et al., 1995; Ishikawa and Tera, 1997). There is strong evidence that at least some of the volcanism is controlled by the presence of faults or fractures within the crust (Haňus and Vaněk, 1985, 1988; Avdeiko et al., 1991).

The nature of magmatic gases has been studied at Kudryavyy volcano, a 996 m high basaltic–andesitic volcano (Tolstyk et al., 1997), located in Medvezhy (Bear) crater on the island of Iturup which is located in the southern sector of the arc (Taran et al., 1995). Fumarolic discharges are vapour rich with temperatures of up to 940 °C. Such high temperatures reflect the presence of a near-surface magma which has been estimated to lie about 80 m below the surface of the volcano (Botcharnikov et al., 2003). It was suggested that the magma may have risen close to the surface about 100 years ago during the last eruption and has remained there since. This has resulted in a large output of volatiles including at least 10^6 t yr^-1 of water as well as a large number of minor elements such as Cd, Pb, W and As (Taran et al., 1995) and Pb, Mo, Bi, Sn, In, As, Se and Te (Wahrenberger et al., 2002). Pure rhenium sulfides with a formula Re_{1.5-2.0}S (Korzhinskii et al., 1994) as well as native metals such as Al, Si, Ti, Fe and Pt (Korzhinskii et al., 1996) have been sampled in the sublimests from this volcano (Petrenchko, 1995). According to Fisher et al. (1998), the Kudryavyy vent also emits 18,300 t yr^-1 of CO₂ to the atmosphere of which 67% is derived from subducted marine carbonate, 21% from subducted organic matter and 12% from the mantle. These authors also calculated that 0.07 km³ of mantle and subducted material would have been required to maintain the observed flux of volatiles over the 100 year period of high-temperature fumarolic activity. On Kamchatka, the Mutnovsky geothermal area is considered to be one of the most active thermal areas in the world with active volcanoes and high-temperature geothermal areas covering an area of 30 km² (Taran et al., 1992).

3. Submarine hydrothermal deposits from the Kurile arc

Since their discovery at Esmeralda submarine volcano on the Mariana Arc in 1978 (Gavrilenko, 1981; Gorshkov et al., 1982) and on the Tonga–Kermadec island arc in 1981 (Cronan et al., 1982; Moorby et al., 1984), submarine hydrothermal manganese deposits in island arcs have been reported in the Aeolian Arc (Ekhardt et al., 1997), the Izu-Bonin Arc (Usui and Someya, 1997; Usui and Glasby, 1998; Usui and Iizasa, 2002) and the Mariana Arc (Hein et al., 1997). In this paper, we will describe the distribution, morphology and composition of submarine hydrothermal iron and manganese deposits from the vicinity of Iturup on the Kurile island arc and from Pip submarine volcano in the western Aleutian arc. The report on the submarine hydrothermal minerals in the Kurile arc is taken mainly from Gavrilenko and Khramov (1989) and Gavrilenko (1997).

Submarine hydrothermal deposits were recovered mainly off the west coast to Iturup, the largest island in the Kurile chain. Iturup itself is characterized by the presence of 9 volcanoes or volcanic complexes (Demon, Chirip, Baransky, Bogatyr Ridge, Astonupuri, Lvinaya Past and Berutarube (all stratovolcanoes), Medvezhy (a somma volcano), the Golets–Tornyi Group of pyroclastic cones and the Grozny Group of complex volcanoes plus one unnamed submarine volcano 45° 2'N, 147° 12'E (see earlier) (Anon, 2002). In addition, a number of geothermal fields are located on Iturup such as the Okeanskoye geothermal field on the Pacific coast near Baransky volcano where a 6 MW geothermal power station has been built (Kononov, 2002).

Previous work on submarine hydrothermal ferromanganese crusts in the Kurile arc is restricted to that of Orlov (1982) who studied handpicked samples from only four stations. The ferromanganese deposits studied here were sampled during cruises 15 and 17 of R/V Volcanolog in 1982 and 1983. Sampling was carried out near the summits of submarine volcanoes and on volcanic ridges by dredge. Fig. 2 shows the locations of the samples described in this study.

At the Vavilov (Stn B15-87), Archangelsky (Stn B15-91) and Obruchev (Stns B17-9, 10 and 11) submarine volcanoes, at an unnamed submarine volcano 5 km NNE of Vavilov (Stns B17-8) and on the submarine ridge which is located south from Simushir island (Stns B17-44, 45 and 46), the rock samples consisted mainly of angular debris of andesite–basalt, andesite–basalt, andesite–basalt.
dacite and dacite. From the submarine volcanoes situated on the western slopes of Urup and Iturup islands (Stns B17-15, 16, 17, 20, 23, 25, 28, 30, 31, 32, 33, 34, 35, and 36), the material consisted of angular debris varying in composition from basalt to dacite. The rocks were mainly fresh pillow-lavas, some of which had been hydrothermally altered with encrustations of sulfur along fissures.

Ferromanganese deposits were represented by two principal morphological types: nodules at Stns B15-87, B17-41, 44 and 46 and crusts at Stns B15-87 and 91 and B17-9, 10, 15, 16, 17, 20, 23, 28, 43, 44 and 46. In addition, sand and gravel cemented by Fe and Mn oxyhydroxides were sampled at Stn B17-20 and pumice and organic remains impregnated by Fe and Mn oxyhydroxides were sampled almost everywhere.

In addition to the results presented here, Anikeeva et al. (in press) have recently reported on a detailed mineralogical and chemical study of ferromanganese crusts taken from a number of seamounts located west of Paramushir Island and from a volcanic ridge located west of Edelstein Island in the northern sector of the Kurile Arc which were sampled during a cruise of R/V Volcanolog in 1991.

4. Chemical and mineralogical analysis

Selected samples of the collected material were analyzed by means of chemical and mineralogical methods including atomic absorption analysis, optical microscopy (investigation of the internal structure of the ferromanganese crusts and optical constants of minerals in polished thin-sections), X-ray diffraction (DRON-1, CoKα at 24 kV, 3 mA) and scanning electron microscopy (JEM-100C with KEVEX-5100) at the Institute of Oceanology, Russian Academy of Sciences, Moscow. In addition, wet chemical analysis and spectral analysis were carried out at the Institute of Volcanology, Petropavlovsk and X-ray
diffraction at the Institute of Mineral Resources, Novosibirsk. For X-ray diffraction analysis, both powdered samples at room temperature and samples heated to 100 °C were analyzed for the identification of buserite and todorokite.

5. Morphology

From the macroscopic character, internal structure and mineralogy of the samples, it was possible to distinguish three types of ferromanganese deposits in the Kurile Arc.

First type (Stns B17-44 and 46) consisted of black crusts and nodules composed of Mn oxides displaying smooth to botryoidal surface texture and a complex internal structure. Usually, the basal layer of the crusts consisted of debris (0.5–2 mm in diameter) cemented with a highly-reflecting manganese-rich material composed mainly of birnessite with lesser amounts of vernadite and rare occurrences of asbolane–buserite and goethite. Based on electron microprobe analysis, birnessite and vernadite were shown to contain Mg, K and Ca and asbolane–buserite–Al and sometimes Si. The low concentration of Ni in these minerals differentiates them from deep-sea manganese nodules which are characterized by the high concentrations of Ni as well as the rare occurrence of asbolane–buserite which is one of the main components in deep-sea nodules.

Above the basal layer is a 30 mm thick crust consisting of radial mammillae with diameters of 0.5–2 mm cemented by thin layers of Mn oxides composed mainly of birnessite. On breaking, the basal layer material is seen to be steel-grey with a metallic luster. In some places, these massive layers have a structure typical of that of todorokite aggregates such as observed in manganese crusts from the Japan Sea (Skornyakova et al., 1987). The mammillae are dull black in appearance. They are composed of finely dispersed aggregates of birnessite and vernadite with minor amounts of lamellar particles of todorokite partly altered to vernadite. The replacement of todorokite by vernadite can be easily observed by SEM and XRD since the appearance of the todorokite particles is markedly different from that of vernadite but it is more difficult to establish whether the transformation of birnessite into vernadite had taken place because of the very similar appearance and diffraction patterns of these minerals.

The upper layer consisted of thin dendrites partly cemented with dense massive material. In appearance and mineral composition, it is identical to the cement of the basal layer. XRD analysis showed that the dendrites consist mainly of 14 Å birnessite and todorokite which is characterized by the absence of Mg in some particles whereas K and Na are always present. Such a mineral association is not characteristic of deep-sea manganese nodules and crusts but has previously been found in hydrothermal manganese crusts from the Atlantis Fracture Zone in the Atlantic Ocean (Chukrov et al., 1979) and the Tadjura Rift in the Gulf of Aden (Gorskov et al., 1987). In the sample from Stn B17-46, the upper part of the crust consisted of an 8 mm thick dense layer formed by the interstratification of thin black and thicker steel-grey layers.

Second type consisted of crusts made up mainly of green and yellowish-green clay, brown veinlets and Mn oxides formed on a sediment substrate (Stns B15-87, B17-9, -10, -11, -17 and -25).

Green or yellowish-green clay formed a dense mass of cementing debris or semi-lithified stratified deposits. XRD analysis showed the clay minerals to be nontronite (Na0.3Fe3+2(Si,Al)4O10(OH)2·nH2O). Based on electron microprobe analysis, the main components of this mineral were shown to be Fe, Si and K with minor amounts of Ca, Mg and Al and the clay often had a brownish colour. In these samples, feroxyhete (δ-FeOOH) was also found. The gradual changes in colour (from yellowish-green to brown) in the surface zone and near the fissure area and the absence of Mn in feroxyhete which is typical for hydrogenic precipitation of this mineral showed that the feroxyhete formed by oxidation of precursor minerals.

Brown veinlets interpenetrated the nontronite (Stns B17-9, 10 and 11) and were filled with an amorphous Fe–Si phase containing minor amounts of feroxyhete. In electron diffraction patterns, the feroxyhete displays diffuse reflections. The most recent mineralization consists of layers of birnessite (1.5 mm thick) crossing Fe–Si veinlets and dendrites of birnessite containing minor amounts of todorokite. Mn oxides also formed thin films on debris and foraminiferal shells.

Thin fissures in the dense nontronite crusts were infilled with black massive Mn oxides. Al could also be found in the clay groundmass. The massive Mn oxides were represented by todorokite and plate-like particles of 7 Å birnessite with minor amounts of 14 Å birnessite and vernadite. All these phases had similar contents of K, Ca and Mg. In some particles of todorokite, Mg was absent.

At Obruchev Seamount (Stns B17-9, -10, -11), the crusts were up to 50 mm thick and displayed variegated colouration due to the irregular alternation of black, brown, ochreous and green layers. These crusts apparently formed close to submarine hydrothermal vents with the formation of different layers reflecting changing physico-chemical conditions in the hydrothermal fluids.

Third type of nodules and crusts were composed of Mn and Fe oxyhydroxides displaying different structure,
mineralogy and chemical composition from the first type of deposit (Stns B15-91, B17-15, 16, 20, 23, 38, 40, 41 and 43). At Stn B17-43, crusts up to 50 mm thick with a mammilated surface texture were recovered.

The base of the thickest crusts consisted of particles cemented with black massive Mn oxides which were composed mainly of birmesite and todorokite with minor amounts of 14 Å birmesite and vernadite. Some particles of todorokite were partly altered to vernadite. The upper part of these crusts was characterized by interlayering of thin layers of brown ore and lighter-coloured clays. The ore substance in the crust consisted of thin layers of collomorphic material and thicker layers. Such a structure is typical of hydrogenous deep-sea manganese crusts and nodules. Electron diffraction studies showed that these layers consisted of vernadite, ferroxhyte and goethite. The thin-bedded part of the crust was similar to deep-sea nodules in terms of composition (Mn/Fe < 2.5). P and Ba are characteristically enriched in vernadite and ferroxhyte in the upper part of these crusts. In some crusts (Stn B17-17), the layers are composed of asbolane–buserite, buserite-I, buserite-II and random todorokite and buserite-II in lesser amounts in those parts of the crust which had contact with sediment. Ni was present in all these minerals.

6. Chemical composition

The chemical composition of selected samples of ferromanganese deposits from individual sampling stations is shown in Table 1. The samples show wide variability in composition with Mn varying from 0.06 to 39%, Fe from 0.32 to 27%, Co from 20 to 1230 ppm, Ni from <50 to 4000 ppm, Cu from <20 to 300 ppm and Zn from 270 to 1100 ppm. For comparison, the average composition of the ferromanganese deposits in the Kurile Arc is compared with the average concentration of Pacific Ocean deep-sea nodules (Andreev, 1994) and with the average composition of Co-rich Mn crusts from the equatorial NW Pacific (Hein, 2004).

In principle, Co-rich Mn crusts should give a better indication of the composition of hydrogenous manganese deposits than deep-sea nodules because they are formed on a substrate and are not therefore in direct contact with the underlying sediment. However, in the

<table>
<thead>
<tr>
<th>Stn N.</th>
<th>Lat (°N)</th>
<th>Long (°E)</th>
<th>Water depth (m)</th>
<th>Mn (ppm)</th>
<th>Fe (ppm)</th>
<th>Co (ppm)</th>
<th>Ni (ppm)</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
<th>Mn/Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>B17-8</td>
<td>46° 59.9'</td>
<td>150° 30.1'</td>
<td>1200–1250</td>
<td>15.6</td>
<td>7.4</td>
<td>190</td>
<td>520</td>
<td>90</td>
<td>440</td>
<td>2.1</td>
</tr>
<tr>
<td>B17-9</td>
<td>47° 06.7'</td>
<td>150° 28.5'</td>
<td>960–1200</td>
<td>1.9</td>
<td>26.1</td>
<td>150</td>
<td>270</td>
<td>50</td>
<td>270</td>
<td>0.07</td>
</tr>
<tr>
<td>B17-11a</td>
<td>47° 06.9'</td>
<td>150° 28.4'</td>
<td>1140–1240</td>
<td>10.6</td>
<td>14.0</td>
<td>80</td>
<td>320</td>
<td>40</td>
<td>710</td>
<td>0.75</td>
</tr>
<tr>
<td>B17-11b</td>
<td>47° 06.9'</td>
<td>150° 28.4'</td>
<td>1140–1240</td>
<td>0.06</td>
<td>24.3</td>
<td>40</td>
<td>50</td>
<td>80</td>
<td>320</td>
<td>0.002</td>
</tr>
<tr>
<td>B17-11c</td>
<td>47° 06.9'</td>
<td>150° 28.4'</td>
<td>1140–1240</td>
<td>0.7</td>
<td>27.0</td>
<td>60</td>
<td>50</td>
<td>50</td>
<td>590</td>
<td>0.03</td>
</tr>
<tr>
<td>B17-15</td>
<td>45° 56.2'</td>
<td>148° 39.9'</td>
<td>900–1100</td>
<td>11.1</td>
<td>12.5</td>
<td>660</td>
<td>2530</td>
<td>190</td>
<td>780</td>
<td>0.89</td>
</tr>
<tr>
<td>B17-16</td>
<td>45° 56.4'</td>
<td>148° 39.8'</td>
<td>830–1200</td>
<td>15.2</td>
<td>13.7</td>
<td>1130</td>
<td>2600</td>
<td>170</td>
<td>890</td>
<td>1.1</td>
</tr>
<tr>
<td>B17-17</td>
<td>46° 00.1'</td>
<td>148° 45.0'</td>
<td>1040–1300</td>
<td>9.6</td>
<td>11.6</td>
<td>120</td>
<td>520</td>
<td>50</td>
<td>390</td>
<td>0.83</td>
</tr>
<tr>
<td>B17-20</td>
<td>45° 53.6'</td>
<td>148° 47.2'</td>
<td>1110–1200</td>
<td>1.5</td>
<td>6.2</td>
<td>120</td>
<td>400</td>
<td>90</td>
<td>350</td>
<td>0.24</td>
</tr>
<tr>
<td>B17-23</td>
<td>45° 02.5'</td>
<td>147° 12.8'</td>
<td>770–780</td>
<td>12.3</td>
<td>17.1</td>
<td>960</td>
<td>2700</td>
<td>200</td>
<td>830</td>
<td>0.72</td>
</tr>
<tr>
<td>B17-25</td>
<td>45° 01.7'</td>
<td>147° 01.5'</td>
<td>350–600</td>
<td>11.5</td>
<td>20.9</td>
<td>1230</td>
<td>2700</td>
<td>180</td>
<td>880</td>
<td>0.55</td>
</tr>
<tr>
<td>B17-38</td>
<td>45° 17.2'</td>
<td>147° 25.6'</td>
<td>330–550</td>
<td>4.2</td>
<td>22.8</td>
<td>160</td>
<td>320</td>
<td>30</td>
<td>600</td>
<td>0.19</td>
</tr>
<tr>
<td>B17-40</td>
<td>45° 27.7'</td>
<td>147° 27.7'</td>
<td>1150–1200</td>
<td>29.6</td>
<td>2.3</td>
<td>110</td>
<td>190</td>
<td>50</td>
<td>290</td>
<td>12.8</td>
</tr>
<tr>
<td>B17-41</td>
<td>45° 32.1'</td>
<td>147° 29.3'</td>
<td>670–800</td>
<td>13.7</td>
<td>18.3</td>
<td>700</td>
<td>900</td>
<td>80</td>
<td>800</td>
<td>0.75</td>
</tr>
<tr>
<td>B17-43</td>
<td>46° 01.0'</td>
<td>147° 56.2'</td>
<td>1500–1650</td>
<td>10.4</td>
<td>15.0</td>
<td>570</td>
<td>1920</td>
<td>300</td>
<td>850</td>
<td>0.69</td>
</tr>
<tr>
<td>B17-44</td>
<td>46° 32.5'</td>
<td>151° 50.8'</td>
<td>880–990</td>
<td>25.8</td>
<td>3.3</td>
<td>750</td>
<td>540</td>
<td>90</td>
<td>550</td>
<td>7.8</td>
</tr>
<tr>
<td>B17-45</td>
<td>46° 33.7'</td>
<td>151° 47.5'</td>
<td>900–950</td>
<td>5.2</td>
<td>11.8</td>
<td>490</td>
<td>120</td>
<td>160</td>
<td>840</td>
<td>0.44</td>
</tr>
<tr>
<td>B17-46a</td>
<td>46° 33.0'</td>
<td>151° 50.3'</td>
<td>680–860</td>
<td>18.7</td>
<td>7.7</td>
<td>310</td>
<td>1220</td>
<td>160</td>
<td>920</td>
<td>2.4</td>
</tr>
<tr>
<td>B17-46b</td>
<td>46° 33.0'</td>
<td>151° 50.3'</td>
<td>680–860</td>
<td>39.0</td>
<td>0.3</td>
<td>70</td>
<td>570</td>
<td>80</td>
<td>1100</td>
<td>122</td>
</tr>
<tr>
<td>B15-87</td>
<td>46° 52.8'</td>
<td>150° 29.0'</td>
<td>680–760</td>
<td>6.7</td>
<td>6.5</td>
<td>20</td>
<td>190</td>
<td>130</td>
<td>860</td>
<td>1.0</td>
</tr>
<tr>
<td>B15-91</td>
<td>46° 26.5'</td>
<td>151° 13.2'</td>
<td>590–640</td>
<td>4.3</td>
<td>9.6</td>
<td>310</td>
<td>430</td>
<td>70</td>
<td>590</td>
<td>0.45</td>
</tr>
<tr>
<td>B15-112</td>
<td>47° 30.6'</td>
<td>152° 49.1'</td>
<td>40</td>
<td>4.1</td>
<td>21.2</td>
<td><30</td>
<td><50</td>
<td>50</td>
<td>460</td>
<td>0.004</td>
</tr>
<tr>
<td>Av.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>11.3</td>
<td>13.6</td>
<td>370</td>
<td>860</td>
<td>110</td>
<td>650</td>
<td>0.83</td>
</tr>
<tr>
<td>Pacific Ocean nodules</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>19.6</td>
<td>12.2</td>
<td>2800</td>
<td>6500</td>
<td>4700</td>
<td>1400</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Co-rich Mn crusts (Hein, 2004) 22.4 16.7 5665 4266 1023 692 1.3

The average compositions of the Pacific Ocean manganese nodules (Andreev, 1994) and of Co-rich Mn crusts from the equatorial NW Pacific (Hein, 2004) are listed for comparison.
vicinity of the oxygen minimum zone (OMZ), Co is enriched in the Co-rich crusts relative to deep-sea nodules because the deposition rate of Mn at the OMZ is at a minimum whilst the deposition rate of Co remains constant. Cu, on the other hand, is depleted in the crusts because CuCl$_3$ becomes the stable form of Cu in seawater under the less oxidizing conditions at the OMZ resulting in a lower deposition rate of Cu from seawater (Glasby, 2006). Of the elements considered, only Mn, Fe, Ni and Zn in the Co-rich crusts can therefore be considered to be hydrogenetic in origin in the strict sense of the term.

On average, the Mn/Fe ratio of the Co-rich Mn crusts is much higher than that of the ferromanganese deposits in the Kurile Arc reflecting the presence of nontronite in the Kurile Arc deposits as well as the fractionation of Mn from Fe in the submarine hydrothermal manganese deposits (Table 1). Zn is also uniformly high in the Kurile Arc deposits. The characteristic enrichment of Zn in the hydrothermal deposits is a consequence of Zn being the trace element most readily taken into solution during hydrothermal leaching (Toth, 1980).

On average, the concentration of Mn is also somewhat lower and the concentration of Fe somewhat higher in the Kurile arc ferromanganese deposits compared to those of the Pacific deep-sea nodules (Table 1). However, the concentrations of Co, Ni and Cu in the deep-sea nodules are several times higher than in the Kurile Arc deposits. This reflects the low concentrations of these elements in the hydrothermal iron and manganese deposits of the Kurile Arc and the absence of any significant diagenetic contribution to the crusts or nodules.

On the basis of the compositional data presented in Table 1, the ferromanganese deposits of the Kurile Arc can be divided into three end members; submarine hydrothermal manganese deposits characterized by Mn/Fe ratios >7 and low contents of Co, Ni, Cu and Zn, submarine hydrothermal iron deposits characterized by high Fe/Mn ratios >10 and low contents of Co, Ni, Cu and Zn and samples characterized by intermediate Mn/Fe ratios and elevated contents of Co, Ni, Cu and Zn which can be considered to be dominantly hydrogenous in origin, although they may contain a significant hydrothermal component in some cases. Samples with Ni contents >1900 ppm may be considered to be hydrogenous in origin (Skornyakova, 1976). The compositional characteristics of these three types of ferromanganese deposit have been discussed by Glasby (2006).

On this basis of mineralogical and compositional, the first type of deposit can be considered to consist of typical submarine hydrothermal manganese crusts characterized by a massive structure and the absence of distinctive layering, high Mn/Fe ratios and low contents of Co, Ni and Cu with todorokite and birnessite present as the main Mn minerals.

The second type of deposit is characterized by high Fe/Mn ratios and low contents of Co, Ni and Cu (Gavrilenko and Khramov, 1989). It consists mainly of nontronite together with minor amounts of todorokite, birnessite and feroxyhyte. The association of nontronite with submarine hydrothermal iron and manganese deposits has previously been observed in submarine hydrothermal formations from the Galapagos Rise, Explorer Ridge and TAG hydrothermal fields (Moorby et al., 1984; Thompson et al., 1985; Lazur et al., 1986; Skornyakova et al., 1987).

The third type of deposit has a more complex mode of formation. The base of the crusts consists of black massive Mn oxides composed mainly of birnessite and todorokite which are typical of submarine hydrothermal deposits of the first type. The upper thin-bedded parts of the crusts, on the other hand, are characterized by intermediate Mn/Fe ratios, high contents of Co, Ni and Cu and the occurrence of Mn–feroxyhyte, Fe–vernadite, asbolane–buserite, buserite-I and buserite-II. These features are typical of hydrogenous deposits and reflect the declining influence of the hydrothermal contribution to the crusts, possibly as a result of migration of the site of deposition away from the active volcanic arc as as

Fig. 3. Shows a triangular plot of (Cu+Ni)–Mn–Fe for hydrogenous Fe–Mn deposits and hydrothermal Mn deposits from the N.W. Pacific (after Usui and Someya, 1997). Superimposed on this diagram are plots of the extreme hydrothermal Mn deposit (B17-40) (solid triangle), the extreme hydrothermal Fe (nontronite) deposit (B17-11b) (solid circle) and the extreme hydrogenous Mn deposit (B17-16) (solid square) from the Kurile Arc.
observed, for example, on the Izu-Bonin Arc (Usui and Someya, 1997; Usui and Glasby, 1998; Usui and Iizasa, 2002).

In order to confirm the validity of the above assignments, the compositions of the extreme end members of each of these three types of deposit were plotted on the triangular diagram of Usui and Someya (1997). This shows that the hydrothermal Mn, hydrothermal Fe and hydrogenous Mn deposits lie within the fields designated by these authors (Fig. 3). Because the hydrogenous Mn deposits mainly overlie preexisting hydrothermal Mn deposits, it follows that there would have been a negligible diagenetic contribution to their formation. This is confirmed by the Ni+Cu contents of these samples which are typical of hydrogenous Mn deposits.

The principal characteristics of each type of deposit are briefly summarized in Table 2.

7. Submarine hydrothermal activity in Kraternaya Bight, Kurile Arc

Ushishir volcano is situated at the central part of Kuril island chain and is represented by two small islands: Riponkicha in the north and Yankicha in the south. These two islands are the remains of the large shield volcano 10 km in diameter (Gorshkov, 1971). Yankicha island has a circular rim with a diameter of more than 1.5 km in which a submerged caldera (Kraternaya Bight) with a diameter of ~ 1 km and maximum depth of 63 m has formed. A narrow strait connects this caldera with the open ocean. Ushishir volcano experienced historic eruptions in 1710, 1769 and 1884 (Anon, 2002, 2005). The 1769 eruption was a submarine eruption from a vent near the centre of the caldera and formed a lava dome. Nowadays the Ushishir volcano is in the stage of solfatar activity (Marhinin and Stratula, 1977; Gavrilenko et al., 1989). The hydrothermal activity is associated with fault zones as demonstrated by geophysical investigations.

Shallow-water hydrothermal fields and areas of seeping hydrothermal fluids have been reported in Kraternaya Bight (Tarasov et al., 1990; Gavrilenko, 1997; Gamo and Glasby, 2003). Subaerial volcanic activity characterized by boiling springs (92–96 °C) occurs in the intertidal zone in the southeastern part of the bight. These volcanic waters are acidic (pH 2–3.5) and contain high concentrations of H2S (up to 340 μM), other reduced sulfur compounds, ammonia, silica (up to 3 mM), phosphorus, and 2–3 orders of magnitude higher concentrations of Mn, Fe, Zn, Cu, Cd, Ni, and Cr than seawater. Mixing with seawater and ground water has resulted in low-temperature hydrothermal fluids with temperatures in the range 10–43 °C and pH of 6–7. Around the perimeter of the bay are numerous gas vents and areas where hydrothermal fluid with a temperature of 10 to 34 °C is seeping through the seafloor at depths of 0 to 22 m. The major components of the vent gases are CO2 (54–66%) and N2 (27–42%). The effects of the hydrothermal fluid inflow are reflected as distinctive peaks of CO2, pH, and H2S in the water column.

Bacterial, algobacterial and diatom mats occur on sloping areas of the crater floor where hydrothermal fluids were seeping as well as near gasohydrothermal vents (Tarasov et al., 1990). These mats were thought to

<table>
<thead>
<tr>
<th>Description</th>
<th>Type 1</th>
<th>Type 2</th>
<th>Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrothermal manganese crusts</td>
<td>Nontronite</td>
<td>Hydrothermal manganese crusts overlain by hydrogenous manganese oxides</td>
<td></td>
</tr>
<tr>
<td>Morphology</td>
<td>Upper layer consists of cemented massive material</td>
<td>Dense layer consists of green or yellowish clay occurring as lithified stratified deposits</td>
<td>Upper part of crust consists of allomorphous material similar to that found in hydrogenous manganese oxides</td>
</tr>
<tr>
<td></td>
<td>Intermediate layer consists of thin Mn oxides</td>
<td>Thin fissures in the crust infilled with black massive Mn oxides</td>
<td>Base of crusts consists of black massive Mn oxides</td>
</tr>
<tr>
<td></td>
<td>Basal layer consists of steel grey material with dense metallic lustre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineralogy</td>
<td>Upper layer consists of 14 Å birnessite and todorokite</td>
<td>Nontronite ((\text{Na}{0.3}\text{Fe}^{3+}{2} (\text{Si,Al}){4} \text{O}{10} (\text{OH}){2} \cdot \text{nH}{2}\text{O})) plus feroxyhyte ((\delta\text{-FeOOH}))</td>
<td>Upper part of crusts consists of vernadite, feroxyhyte and goethite</td>
</tr>
<tr>
<td></td>
<td>Intermediate layer consists of birnessite and vernadite</td>
<td>Base of crusts consists mainly of birnessite and todorokite</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basal layer consists of birnessite and vernadite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composition</td>
<td>High Mn/Fe ratios and low contents of Co, Ni and Cu</td>
<td>High Fe/Mn ratios and low contents of Co, Ni and Cu</td>
<td>Upper part of crusts displays intermediate Mn/Fe ratios, and high contents of Co, Ni and Cu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Base of crusts displays high Mn/Fe ratios and low contents of Co, Ni and Cu</td>
<td></td>
</tr>
</tbody>
</table>
serve as biogeochemical filters which transform the hydrothermal trace elements and reduced compounds into sedimentary organic matter. In particular, the 5 mm thick algobacterial mats have a multi-layered structure which includes many microorganisms (different kinds of sulfur oxidizing bacteria and thermophylic archaeobacteria) and are characterized by extremely high rates of CO₂ fixation and organic matter production (up to 33.4 gC m⁻² d⁻¹). The influence of both chemosynthetic and photosynthetic pathways may result in complicated metabolic and energy cycles. The bottom macrofauna have a high population density and biomass (up to 10 kg m⁻²).

Sediment thickness within the crater was estimated to be in the range 80–120 m based on a study of seismic records (Gavrilenko, 1997). The upper layer of the sediments ranged from 1 mm to 0.27 m thick and consisted mainly of fine sandy silt in which oxidizing conditions prevail. The lower layer consisted of sandy and fine sandy silt which smell of H₂S indicating reducing conditions. An interesting feature is the occurrence of Fe–P crusts in the sediments (Gavrilenko and Khramov, 1989). These crusts are generally a few centimetres in diameter, 1–3 mm thick, fine layered with layers of different colours ranging from almost black to brown ochre and are enriched in Fe and P with P concentrations of up to 5%. The associated sediments are also enriched in Fe (3.8–11%) and P (0.05–1.8%) but contain low contents of Mn (0.05–0.18%). The elevated Fe and P concentrations in the crusts and sediments relative to volcanic rocks from Ushishir (Gavrilenko, 1997) and sediments from the Sea of Okhotsk (Ilyev et al., 1979)

Fig. 4. Is a mosaic of side-scan profiles showing the three principal peaks on Piip volcano.
suggest that the Fe and P are mainly hydrothermal in origin, although the uptake of P from seawater on freshly-precipitated Fe oxyhydroxides cannot be discounted. However, the low concentration of Mn precludes a hydrothermal origin for this element. This situation is similar to that encountered in the Santorini caldera on the Aegean Arc where the hydrothermal Fe oxyhydroxides have deposited mainly within the caldera whereas much of the dissolved Mn has been swept out to sea (Boström et al., 1990; Papavassiliou et al., 1990; Cronan et al., 2000).

8. Submarine hydrothermal deposits from Piip submarine volcano, western Aleutian Arc

Piip volcano is an active submarine volcano characterized by a dacite–rhyolite association located at 55° 25′ N, 167° 20′ E in the southern part of the Komandorskaya depression of the western Aleutian Arc about 40 km north of Bering island (Tsvetkov, 1991; Anon, 2005). It is located in an area of relatively low seismicity compared to the central Aleutian and southern Kurile Arcs (Inoue et al., 1987; Tarakanov, 1987). The volcano was discovered during the 21st cruise of R/V Volcanolog in 1984 and subsequently explored during the 26th (1986), 28th (1987), 32nd (1988), 35th (1989) and 39th (1991) cruises of R/V Volcanolog and the 22nd cruise (1990) of R/V Academician M. Keldysh in conjunction with the submersible Mir (Seliverstov, 1988; Seliverstov et al., 1986, 1991, 1995; Bogdanova et al., 1990; Gavrilenko, 1997; Bogdanov and Sagalevich, 2002).

Piip volcano is located on the central part of Volcanologists Massif which rises 4000 m above the deep-sea floor. The massif intruded into a major NNE–SSW-oriented graben. Both the graben and massif are relatively young and were formed as a result of back-arc spreading. The volcano has three summits: northern, central and southern (Fig. 4). The northern crater has a diameter 300 m and the southern crater 500 m. The volcanoes consist of andesite–dacite, dacite and pumice.

The first sign of submarine hydrothermal fluid discharge in the form of a gas plume above the volcano was recorded on the echo-sounder in 1987. Subsequent submersible studies showed that hydrothermal activity at the northern crater took the form of shimmering water and jet-like vent fluids emanating from a water depth of about 382 m. Hydrothermal discharge was estimated to have had a velocity of 0.05–0.1 m s\(^{-1}\), a flow diameter of 0.1 m and an output of 50–100 l min\(^{-1}\). Although the maximum measured temperature was 133 °C (the upper limit of the

Table 3

| Chemical compositions of intermediate-temperature deposits from Piip volcano |
---------------------------------	---------------	----------------	----------------	----------------	---------------	----------------	---------------	---------------	\n	SiO\(_2\)	Anhydrite, gypsum	Anhydrite, gypsum	Anhydrite, gypsum	Gypsum, anhydrite	Opal, pyrite, kaolinite	Calcite, quartz, gypsum	Aragonite, calcite, gypsum	Pyrite, calcite, Barite	Barite, calcite
--------	----------------	----------------	----------------	----------------	---------------	----------------	---------------	---------------	\n	tr.	n.d.	n.d.	n.d.	35.8	0.70	n.d.	0.16	1.3	0.13
n.d.	0.02	0.06	n.d.	0.30	n.d.	0.02	n.d.	n.d.	n.d.										
0.23	0.17	1.01	0.10	10.2	0.40	0.06	0.14	0.74	0.42										
0.22	0.55	0.27	0.20	5.5	1.2	0.18	n.a.	0.40	0.24										
n.a.	n.a.	n.a.	n.a.	42.3	n.a.	n.a.	84.8	n.a.	n.a.										
n.d.	n.d.	n.d.	n.d.	0.20	n.d.	0.02	0.03	n.d.	n.d.										
0.58	0.44	0.30	0.42	n.d.	0.44	0.44	0.15	0.88	0.29										
40.9	39.5	39.1	33.9	n.d.	53.8	52.2	4.3	0.30	1.60										
0.68	0.68	0.74	0.36	0.52	0.58	0.72	0.22	0.58	0.28										
n.d.	n.d.	n.d.	n.d.	0.35	n.d.	0.03	0.04	0.03	0.03										
n.d.	0.90	0.80	0.60	n.d.	0.90	0.50	0.50	n.d.	n.d.										
1.8	0.20	0.35	15.4	3.60	0.30	n.a.	4.5	n.a.	n.d.										
n.d.	n.d.	n.d.	0.05	0.26	n.d.	1.8	n.d.	n.d.	n.d.										
0.30	0.30	0.30	0.30	1.9	0.48	n.a.	23.4	31.6											
54.6	56.3	56.8	49.8	na	0.22	0.06	0.06	0.22	0.22										
0.23	0.15	0.15	0.15	0.15	0.15	0.23	0.19	0.35											
0.25	0.13	0.21	0.12	0.04	0.01	0.23	0.01	1.7	0.70										
99.7	99.2	99.7*	100.4	100.7**	100.2	99.9	100.2***	99.9	98.2										

All elements in % (Sagalevich et al., 1992). FeS\(_2\) was determined by wet chemical analysis of S and Fe(II).

Notes: 1. Main minerals are underlined.
2. n.d. not detected, n.a. not analyzed, tr. trace.
3. Sum includes *0.13% PbO, **1.16% Cu, ***3.0% As+1.2% Sb+0.57% Hg.
temperature measurement system), there were indications that the actual fluid temperature may have reached 250 °C (Seliverstov et al., 1995). Most of the gas discharged from the vents consisted of thermogenic methane (>80%) (Sagalevich et al., 1992). Many bacterial mats were discovered, mostly coloured white and more rarely dark gray, brown and orange, as well as hydrothermal macrofauna (giant clams, Calyptogena).

Submarine hydrothermal minerals displaying a variety of forms were recovered. Based on their temperature of formation, the hydrothermal minerals could be divided on two types, intermediate-temperature sulfate, carbonate, amorphous silica and pyrite sampled from the northern crater by submersible and low-temperature iron and manganese deposits sampled from the slopes and summit of the volcano.

Six types of intermediate-temperature deposits could be distinguished:

1. Anhydrite chimneys from the northern summit which have a height of 1.5 m and a width of 0.4 m.
2. Semi-lithified crusts consisting of gypsum which overlie the dacites close to the vents of the northern summit.
3. Barite coated with black ferromanganese oxyhydroxides was sampled at distances of several meters from the vent on the southern summit.
4. Non-lithified deposits in the vicinity of the vents of northern summit which consisted of amorphous

<table>
<thead>
<tr>
<th>Nontronite Fe oxyhydroxides</th>
<th>Hisingerite Mn oxyhydroxides</th>
<th>Manganese crusts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>0.06</td>
<td>0.70</td>
</tr>
<tr>
<td>Fe</td>
<td>14.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Al</td>
<td>4.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Ti</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>Cr</td>
<td>50</td>
<td>18</td>
</tr>
<tr>
<td>Li</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Mo</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>V</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>Sr</td>
<td>250</td>
<td>690</td>
</tr>
<tr>
<td>Cd</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Pb</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Co</td>
<td>270</td>
<td>240</td>
</tr>
<tr>
<td>Ni</td>
<td>36</td>
<td>59</td>
</tr>
<tr>
<td>Cu</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Zn</td>
<td>47</td>
<td>94</td>
</tr>
<tr>
<td>Mn/Fe</td>
<td>0.004</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Mn, Fe, Al and Ti in %; all other elements in ppm (Bogdanova et al., 1990; Gavrilenko, 1997).

Fig. 5. Is an echo-sounder profile showing a gas plume rising from a water depth of about 382 m above the northern crater of Piip volcano.
Deposits were distinguished visually and mineralogically and the pore size varied from several up to 20 μm. Hydrothermally altered, intensively fissured and easily erodible black Mn deposits. All the pumice samples were impregnated with Fe oxides on the surface of the pumice were always overlain by black Mn deposits. Nontronite also infilled the cavities and impregnated the groundmass of the pumice. Fe oxyhydroxides within it. Nontronite also infilled the cavities and impregnated the groundmass of the pumice. Fe oxyhydroxides on the surface of the pumice were always overlain by black Mn deposits. All the pumice samples were hydrothermally altered, intensively fissured and easily broken. The porosity of the pumice was up to 50 vol. % and the pore size varied from several up to 20–30 mm.

Four types of low-temperature iron and manganese deposits were distinguished visually and mineralogically:

1. Yellowish-green mineral aggregates and grayish green crusts infilling cavities within pumice and partly interpenetrating the groundmass such that the whole sample becomes grayish-green. Nontronite was the dominant mineral type in these samples;
2. Orange-yellow and rusty infillings up to 2 mm thick within the fissures. These consisted of poorly crystalline Fe oxyhydroxides in which ferrihydrite was sometimes determined, possibly formed by the crystallization of Fe oxyhydroxides;
3. Thin brown coatings on the surface of the pumice consisting of hisingerite (Fe₃Si₂O₅(OH)₄·2H₂O) with minor amounts of quartz. The hisingerite occurred as fibrous aggregates and was possibly formed as the result of alteration of iron silicates following the oxidation of Fe²⁺ to Fe³⁺. Quartz was deposited as a late-stage precipitate;
4. 1–3 mm thick black manganese crusts covering the surfaces of the rocks in which birnessite was the principal mineral phase.

The chemical compositions of the four types of low-temperature hydrothermal deposit are presented in Table 4. The nontronite and Fe oxyhydroxides were formed by direct precipitation from hydrothermal fluids (Severmann et al., 2004), possibly assisted by bacterial activity in the case of nontronite (Koski et al., 2003).

In 2004, a cruise of R/V Professor Khromov was undertaken to Piip submarine volcano as part of a joint Russian–American Expedition ‘Rusalka’. During this cruise, side-scan profiling was carried out to map the morphology of the volcanic massif, special echosounding profiling of the water column was undertaken to detect the presence of gas plumes above the summit of volcano and rocks, and submarine hydrothermal minerals were sampled. Fig. 4 shows a 3-D image of Piip volcano obtained by side-scan profiling and Fig. 5 confirms that vigorous submarine hydrothermal activity is presently taking place in the northern crater. Samples of andesite rocks, pumice and tuff impregnated and coated by Fe-Mn-hydroxides <1 mm thick and small fragments of low-temperature barite were recovered from the volcano by dredging.

9. Discussion

Submarine hydrothermal manganese crusts are generally considered to have precipitated last in the sequence sulfide mineral associated with silicates and oxides, sharply fractionated oxides and silicates of localized extent and widely dispersed ferromanganese oxides and may therefore be considered to be late-stage, low temperature hydrothermal deposits (Rogers et al., 2001; Kuhn et al., 2003a,b). The submarine hydrothermal manganese deposits recovered from the Kurile Arc during the course of this study were formed at relatively shallow water depths (<1650 m). Perhaps the best comparison of the submarine hydrothermal deposits of the Kurile Arc can be made with submarine hydrothermal manganese and sulfide deposits from the seismically less active Izu-Bonin Arc to the south (Usui and Glasby, 1998; Iizasa et al., 1999, 2004; Glasby et al., 2000; Usui and Iizasa, 2002). In this case, recent hydrothermal manganese crusts associated with active hydrothermal systems tend to occur on seamounts or in rifts located about 5–40 km behind the volcanic front. Fossil hydrothermal manganese crusts are generally overlain by hydrogenous manganese crusts. The thickness of the overlying hydrogenous crusts depends on the length of time since hydrothermal activity ceased.

In their earlier study, Gavrilenko and Khramov (1989) concluded that submarine hydrothermal iron and manganese deposits were recovered only in the southern half.
of the Kurile Arc based on dredging operations carried out along the length of the arc. This finding was in agreement with the conclusion of Avdeiko and Krasnov (1988) that the extensive development of submarine hydrothermal activity occurs mainly in the southern part of the arc. However, the recent results of Anikeeva et al. (in press) demonstrate that all three types of submarine hydrothermal and hydrogenous manganese and iron deposits reported in this study are found in the northern sector of the arc. These deposits therefore appear to occur along the length of the arc.

Five submarine caldera are located along the Kurile Arc west of Onekotan, Urup and Iturup. Submarine hydrothermal sulfides are often found in submarine caldera. A good example of this type of mineralization is the Sunrise deposit which is located in the caldera of Myojin Knoll on the Izu-Bonin Arc at a water depth of 1210 m. This deposit contains approximately 9×10^6 t of massive sulfides with an average composition of 21.9% Zn, 2.3% Pb, 1210 ppm Ag and 20 ppm Au putting in the top 20% of the world’s kuroko deposits by size (Iizasa et al., 1999). However, the five caldera located on Kurile Arc all occur at relatively shallow water depths. The one off Onekotan occurs at a water depth of 700 m, the two off Urup at 300 m, the one at the northern end of Iturup at 300 m and the one at the southern end of Iturup at 580 m. As a consequence, subsurface boiling would have occurred during the ascent of the hydrothermal fluid resulting in the deposition of sulfide minerals beneath the seafloor in all five caldera (Ishibashi and Urabe, 1995). These caldera would therefore most probably be characterized by the occurrence of sulfate rather than sulfide chimneys. However, the southern Kurile Arc is amongst the seismically most active submarine volcanic arcs in the world (Addicott and Richards, 1982). As such, it might reasonably be expected that the two caldera located west of Iturup Island would be characterized by intense submarine hydrothermal activity such as found in the SPOT area (Southernmost Part of the Okinawa Trough) in the southern Okinawa Trough (Glasby and Notsu, 2003). Venting of the hydrothermal fluids may well be associated with ring faults located along the back wall of the crater as observed at Myojin Knoll (Iizasa et al., 1999). In addition, de Ronde et al. (2003b) have estimated that actively venting volcanoes occur with a frequency of one vent site for every 87 km of arc length along intraoceanic volcanic arcs based on a survey of 2900 km of these arcs. Since the Kuriles arc is about 600 km in length, this suggests that there should be about 7 active vent sites located along the Kuriles arc at present.

Kraternaya Bight is a shallow submerged caldera with a maximum depth of 63 m. Here, hydrothermal activity around the crater is largely fumarolic with maximum temperatures below boiling point. No hydrothermal vents were sampled but it is likely that these are of relatively low temperature precipitating mainly Fe oxyhydroxides on contact with seawater. Because the residence time of hydrothermal Mn in seawater is several years, about five orders of magnitude longer than that of hydrothermal Fe (Glasby, 2006), it follows that divalent Mn of hydrothermal origin would have been virtually all removed from the crater before Mn oxyhydroxides could form. In addition, boiling would almost certainly have taken place during the ascent of the hydrothermal fluids to the surface resulting in sulfide mineralization within the host rocks. Perhaps the principal interest in studying hydrothermal activity in Kraternaya Bight, however, lies in the influence of the hydrothermalism on the biota in the crater.

Piip submarine volcano in the western Aleutian Arc also appears to be very active with intermediate-temperature hydrothermal deposits located in the summit caldera of the seamount and low-temperature hydrothermal deposits from the periphery of the hydrothermal fields. The shallow depth of these craters implies that boiling of the ascending hydrothermal fluid has taken place precluding the deposition of sulfides at the summit of the volcano. Intermediate-temperature Ba–Ca–Si–Fe–Mn deposits such as found at Piip are rather common in the submarine hydrothermal fields of the southwest Pacific and have been reported in the North Fiji Basin (Bendel et al., 1993), Okinawa Trough (Halbach et al., 1993), Manus Basin (Bogdanov and Sagalevich, 2002), on Franklin Seamount in the Woodlark Basin (Hekinian et al., 1993; Bogdanov et al., 1997) and the Valu Fa Ridge in the Lau Basin (Herzig et al., 1990; Fouquet et al., 1993). In the North Fiji basin, Okinawa Trough and Lau Basin, they are associated with high-temperature massive sulfide deposits. The closest analogue to Piip volcano is Franklin Seamount where both low-temperature (ferromanganese) and intermediate-temperature (barite and amorphous silica with minor amounts of sulfides) deposits have been reported in the summit caldera. Bogdanov et al. (1997) have suggested that subsurface deposition of massive sulfides below the low- and intermediate-temperature mineralization zones may have occurred. The high concentrations of As (>1000 ppm) in the Fe–Mn–Si mineralization of Franklin Seamount may also be an evidence that these massive subsurface sulfide deposits contain high concentrations of Au and Ag (Boyd et al., 1993).

As shown in Table 2, the concentrations of As and Hg in pyrite-bearing mineralization from Piip volcano
reach 3% and 0.57%, respectively, in some cases. These high concentrations of As and Hg in the pyrite suggest the influence of phase separation on the hydrothermal system since both elements are known to fractionate into the vapour phase during boiling. A similar situation has been observed at the Grimsey hydrothermal field north of Iceland (Hannington et al., 2001; Kuhn et al., 2003b). In general, barite-bearing hydrothermal mineralization is characterized by high gold and silver concentrations (Hannington et al., 1991).

10. Conclusions

The Kurile Arc consists of at least 100 submarine volcanoes and 5 submarine calderas located mainly in the rear arc. The arc is seismically very active, particularly in the south, and is characterized by extensive volcanism and hydrothermal activity. Three types of submarine hydrothermal mineralization were recovered from the submarine volcanic summits from the southern and central parts of Kurile Arc in the vicinity of Iturup, Urup and Simushir islands. These consist of hydrothermal manganese crusts, nontronite and hydrothermal manganese crusts overlain by hydrogenous manganese oxides. From the preceding discussion, it is clear that Kurile Arc has the potential to host submarine hydrothermal systems and associated submarine hydrothermal mineralization analogous to that discovered at other volcanic arcs in the western Pacific such as the Izu-Bonin and Tonga–Kermadec Arcs. In the caldera located west of Iturup, it is anticipated that intense hydrothermal activity such as found in the SPOT area in the southern Okinawa Trough will occur.

Hydrothermal activity was also discovered at the Piiap submarine volcano located in the western Aleutian Arc. It is characterized by intermediate- and low-temperature hydrothermal minerals with associated bacterial mats and giant clams. The maximum measured temperature of the hydrothermal fluids was 133 °C, although the actual temperature may have reached 250 °C. Based on the shallow water depth of the Piiap hydrothermal field, the formation of subsurface sulfide deposits would be expected.

At present, information on submarine hydrothermal activity and mineralization in the Kurile and Aleutian Arcs is extremely limited. Future studies should therefore focus on identifying submarine hydrothermal systems in these two regions and evaluating the controls on their formation. Based on experience gained during many Russian cruises, the following methods of exploration are recommended for prospecting for hydrothermal areas, near-bottom horizontal profiling of the water column by CTD with nephelometer and methane sensor, geoelectrical profiling, shallow drilling and heat flow measurements.

Acknowledgements

We are grateful to the crew members of R/V Vulcanolog and Professor Khromov cruises, to Dr. Kathy Crane, chief scientist of the of ‘Rusalka’ expedition, and the geological team of this expedition headed by Dr. Anatoly Astakhov for collecting the samples and data on which this study is based. This study was supported by RFBR grants (05-05-65102, 06-05-96002, 06-05-96129) and FEB RAS grant (06-III-A-08-326).

References

